版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆廣東省深圳市南山區(qū)南頭中學高二上數(shù)學期末調(diào)研模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某商場為了解銷售活動中某商品銷售量與活動時間之間的關(guān)系,隨機統(tǒng)計了某次銷售活動中的商品銷售量與活動時間,并制作了下表:活動時間銷售量由表中數(shù)據(jù)可知,銷售量與活動時間之間具有線性相關(guān)關(guān)系,算得線性回歸方程為,據(jù)此模型預(yù)測當時,的值為()A B.C. D.2.拋物線的焦點到準線的距離為()A. B.C. D.3.某軟件研發(fā)公司對某軟件進行升級,主要是對軟件程序中的某序列重新編輯,編輯新序列為,它的第項為,若序列的所有項都是1,且,.記數(shù)列的前項和、前項積分別為,,若,則的最小值為()A.2 B.3C.4 D.54.已知橢圓與雙曲線有相同的焦點,則的值為A. B.C. D.5.已知數(shù)列為等比數(shù)列,,則的值為()A. B.C. D.26.如圖所示幾何體的正視圖和側(cè)視圖都正確的是()A. B.C. D.7.設(shè)變量滿足約束條件,則的最大值為()A.0 B.C.3 D.48.已知,則下列不等式一定成立的是()A B.C. D.9.我國古代數(shù)學著作《算法統(tǒng)宗》中有這樣一段記載:“一百八十九里關(guān),初行健步不為難,次日腳痛減一半,六朝才得到其關(guān).”其大意為:“有一個人共行走了189里的路程,第一天健步行走,從第二天起,因腳痛每天走的路程為前一天的一半,走了6天才到達目的地.”則該人第一天行走的路程為()A.108里 B.96里C.64里 D.48里10.設(shè)正實數(shù),滿足(其中為正常數(shù)),若的最大值為3,則()A.3 B.C. D.11.阿基米德既是古希臘著名的物理學家,也是著名的數(shù)學家,他利用“逼近法”得到橢圓的面積除以圓周率等于橢圓的長半軸長與短半軸長的乘積.若橢圓的中心為原點,焦點、在軸上,橢圓的面積為,且離心率為,則的標準方程為()A. B.C. D.12.在中,角A,B,C所對的邊分別為a,b,c,,,則()A. B.1C.2 D.4二、填空題:本題共4小題,每小題5分,共20分。13.若把英語單詞“”的字母順序?qū)戝e了,則可能出現(xiàn)的錯誤有______種14.某學校要從6名男生和4名女生中選出3人擔任進博會志愿者,則所選3人中男女生都有的概率為___________.(用數(shù)字作答)15.在△ABC中,,AB=3,,則________16.數(shù)列的前項和為,則_________________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列,,,且,其中為常數(shù)(1)證明:;(2)是否存在,使得為等差數(shù)列?并說明理由18.(12分)一個長方體的平面展開圖及該長方體的直觀圖的示意圖如圖所示(1)請將字母F,G,H標記在長方體相應(yīng)的頂點處(不需說明理由):(2)若且有下面兩個條件:①;②,請選擇其中一個條件,使得DF⊥平面,并證明你的結(jié)論19.(12分)如圖,已知菱形ABCD的邊長為3,對角線,將△沿著對角線BD翻折至△的位置,使得,在平面ABCD上方存在一點M,且平面ABCD,(1)求證:平面平面ABD;(2)求點M到平面ABE的距離;(3)求二面角的正弦值20.(12分)中國共產(chǎn)黨建黨100周年華誕之際,某高校積極響應(yīng)黨和國家的號召,通過“增強防疫意識,激發(fā)愛國情懷”知識競賽活動,來回顧中國共產(chǎn)黨從成立到發(fā)展壯大的心路歷程,表達對建黨100周年以來的豐功偉績的傳頌.教務(wù)處為了解學生對相關(guān)知識的掌握情況,隨機抽取了100名學生的競賽成績,并以此為樣本繪制了如下樣本頻率分布直方圖(1)求值并估計中位數(shù)所在區(qū)間(2)需要從參賽選手中選出6人代表學校參與省里的此類比賽,你認為怎么選最合理,并說明理由21.(12分)已知橢圓點(1)若橢圓的左焦點為,上頂點為,求點到直線的距離;(2)若點是橢圓的弦的中點,求直線的方程22.(10分)設(shè)Sn是等差數(shù)列{an}的前n項和,已知,S2=-3.(1)求{an}的通項公式;(2)若,求數(shù)列{bn}的前n項和Tn.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】求出樣本中心點的坐標,代入回歸直線方程,求出的值,再將代入回歸方程即可得解.【詳解】由表格中的數(shù)據(jù)可得,,將樣本中心點的坐標代入回歸直線方程可得,解得,所以,回歸直線方程為,故當時,.故選:C.2、B【解析】根據(jù)拋物線的幾何性質(zhì)可得選項.【詳解】由得,所以,所以拋物線的焦點到準線的距離為1,故選:B.3、C【解析】先利用序列的所有項都是1,得到,整理后得到是等比數(shù)列,進而求出公比和首項,從而求出和,利用,列出不等式,求出,從而得到的最小值【詳解】因為,,所以,又序列的所有項都是1,所以它的第項,所以,所以數(shù)列是等比數(shù)列,又,,所以公比,.所以,,,要,即,即,所以,所以,,所以最小值為4.故選:C.4、C【解析】根據(jù)題意可知,結(jié)合的條件,可知,故選C考點:橢圓和雙曲線性質(zhì)5、B【解析】根據(jù)等比數(shù)列的性質(zhì)計算.【詳解】由等比數(shù)列的性質(zhì)可知,且等比數(shù)列奇數(shù)項的符號相同,所以,即.故選:B6、B【解析】根據(jù)側(cè)視圖,沒有實對角線,正視圖實對角線的方向,排除錯誤選項,得到答案.【詳解】側(cè)視時,看到一個矩形且不能有實對角線,故A,D排除而正視時,有半個平面是沒有的,所以應(yīng)該有一條實對角線,且其對角線位置應(yīng)從左上角畫到右下角,故C排除.故選:B.7、A【解析】先畫出約束條件所表示的平面區(qū)域,然后根據(jù)目標函數(shù)的幾何意義,即可求出目標函數(shù)的最大值.【詳解】解:滿足約束條件的可行域如下圖所示:由,可得,因為目標函數(shù),即,表示斜率為,截距為的直線,由圖可知,當直線經(jīng)過時截距取得最小值,即取得最大值,所以的最大值為,故選:A.8、B【解析】運用不等式的性質(zhì)及舉反例的方法可求解.【詳解】對于A,如,滿足條件,但不成立,故A不正確;對于B,因為,所以,所以,故B正確;對于C,因為,所以,所以不成立,故C不正確;對于D,因為,所以,所以,故D不正確.故選:B9、B【解析】根據(jù)題意,記該人每天走的路程里數(shù)為,分析可得每天走的路程里數(shù)構(gòu)成以的為公比的等比數(shù)列,由求得首項即可【詳解】解:根據(jù)題意,記該人每天走的路程里數(shù)為,則數(shù)列是以的為公比的等比數(shù)列,又由這個人走了6天后到達目的地,即,則有,解可得:,故選:B.【點睛】本題考查數(shù)列的應(yīng)用,涉及等比數(shù)列的通項公式以及前項和公式的運用,注意等比數(shù)列的性質(zhì)的合理運用.10、D【解析】由于,,為正數(shù),且,所以利用基本不等式可求出結(jié)果【詳解】解:因為正實數(shù),滿足(其中為正常數(shù)),所以,則,所以,所以故選:D.11、A【解析】設(shè)橢圓方程為,解方程組即得解.【詳解】解:設(shè)橢圓方程為,由題意可知,橢圓的面積為,且、、均為正數(shù),即,解得,因為橢圓的焦點在軸上,所以的標準方程為.故選:A.12、C【解析】直接運用正弦定理可得,解得詳解】由正弦定理,得,所以故選:C二、填空題:本題共4小題,每小題5分,共20分。13、23【解析】先計算該單詞所有字母能夠組成的所有排列情況,然后減去正確的,即是可能出現(xiàn)錯誤的情況.【詳解】因為“”四個字母組成的全排列共有(種)結(jié)果,其中只有排列“”是正確的,其余全是錯誤的,故可能出現(xiàn)錯誤的共有(種).故答案為:23.14、##0.8【解析】由排列組合知識求得所選3人中男女生都有方法數(shù)及總的選取方法數(shù)后可計算概率【詳解】從6名男生和4名女生中選出3人的方法數(shù)是,所選3人中男女生都有的方法數(shù)為,所以概率為故答案為:15、3【解析】計算得出,可得出,再利用平面向量數(shù)量積的運算性質(zhì)可求得結(jié)果.【詳解】∵,,,∴故答案為:3.16、【解析】利用計算可得出數(shù)列的通項公式.【詳解】當時,;而不適合上式,.故答案:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)存在;理由見解析【解析】(1)由得兩式相減可得答案;(2)利用得,可得,是首項為1,公差為4的等差數(shù)列,是首項為3,公差為4的等差數(shù)列,因此存在【小問1詳解】由題設(shè),,,兩式相減得,,由于,所以【小問2詳解】由題設(shè),,,可得,由(1)知,.令,解得,故,由此可得,是首項為1,公差為4的等差數(shù)列,;又,同理,是首項為3,公差為4的等差數(shù)列,所以,所以.因此存在,使得為等差數(shù)列18、(1)答案見解析(2)答案見解析【解析】(1)由展開圖及直觀圖直接觀察可得;(2)選擇②,根據(jù)線面垂直的判定定理即可證明DF⊥平面.【小問1詳解】如圖,【小問2詳解】若選擇①,若此時有平面,則由平面可得,而平面,而平面,故,因為,則平面,由平面可得,故此時矩形為正方形,,矛盾.選擇條件②,使得平面,下面證明如圖,連接,在長方體中,平面,而平面,故,而,故矩形為正方形,故,而,故平面,而平面,故,同理,又,所以平面.19、(1)證明見解析;(2)1;(3).【解析】(1)過E作EO垂直于BD于O,連接AO,由勾股定義易得,由菱形的性質(zhì)有,再根據(jù)線面垂直、面面垂直的判定即可證結(jié)論.(2)構(gòu)建空間直角坐標系,確定相關(guān)點的坐標,進而求的坐標及面ABE的法向量,應(yīng)用空間向量的坐標運算求點面距.(3)由(2)求得面MBA的法向量,結(jié)合(2)中面ABE的法向量,應(yīng)用空間向量夾角的坐標表示求二面角的余弦值,進而求其正弦值.【小問1詳解】過E作EO垂直于BD于O,連接AO,因為,,故,同理,又,所以,即因為ABCD為菱形,所以,又,所以面ABD,又面EBD,所以面面ABD【小問2詳解】以O(shè)為坐標原點,以,,分別為x軸,y軸,z軸的正方向,如圖建立空間直角坐標系,則,,,,,所以,,面ABE的法向量為,所以,令,則又,則點M到面ABE的距離為【小問3詳解】由(2)得:面ABE的一個法向量為,且,若面MBA的法向量為,則,令,則所以,故二面角正弦值為20、(1);中位數(shù)所在區(qū)間(2)選90分以上的人去參賽;答案見解析【解析】(1)根據(jù)頻率分布直方圖中,所有小矩形面積和為1,即可求得a值,根據(jù)各組的頻率,即可分析中位數(shù)所在區(qū)間.(2)計算可得之間共有6人,滿足題意,分析即可得答案.【小問1詳解】,解得成績在區(qū)間上的頻率為,,所以中位數(shù)所在區(qū)間,【小問2詳解】選成績最好的同學去參賽,分數(shù)在之間共有人,所以選90分以上的人去參賽.(其它方案如果合理也可以給分)21、(1)(2)【解析】(1)根據(jù)橢圓基本關(guān)系求得,,再利用截距式求得方程,進而求得點到直線的距離.(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廈門酒店轉(zhuǎn)讓合同范例
- 外帳借款合同范例
- 機械設(shè)備運維服務(wù)合同范例
- 商鋪柜臺租用合同范例
- 單位鏟車置換合同范例
- 吉林市勞動合同范例pdf
- 便利店勞務(wù)合同范例
- 小區(qū)賣房合同范例
- 工程門供貨合同范例
- 和盛機械合同范例
- 養(yǎng)殖場轉(zhuǎn)讓寫合同范例
- 廣東省廣州市天河區(qū)2023-2024學年高一上學期期末考試數(shù)學試卷(解析版)
- 2024社區(qū)市民學校工作計劃社區(qū)市民教育工作計劃
- 抗生素使用及控制制度
- 特殊作業(yè)安全管理監(jiān)護人專項培訓(xùn)課件
- 自行車被盜案匯報課件
- 龍王廟煤礦消防工作匯報
- 一些常見物質(zhì)的安托因常數(shù)
- 庫存盤點盈虧處理申請表xls
- 35kV及以下架空電力線路施工及驗收規(guī)范
- 鍋爐課程設(shè)計Excel表格
評論
0/150
提交評論