版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆吉林長(zhǎng)春市普通高中高二數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若方程表示雙曲線,則實(shí)數(shù)m的取值范圍是()A. B.C. D.2.已知雙曲線,則雙曲線的漸近線方程為()A. B.C. D.3.已知A,B,C是橢圓M:上三點(diǎn),且A(A在第一象限,B關(guān)于原點(diǎn)對(duì)稱,,過A作x軸的垂線交橢圓M于點(diǎn)D,交BC于點(diǎn)E,若直線AC與BC的斜率之積為,則()A.橢圓M的離心率為 B.橢圓M的離心率為C. D.4.已知命題p:,,則命題p的否定為()A., B.,C., D.,5.設(shè)分別是橢圓的左、右焦點(diǎn),P是C上的點(diǎn),則的周長(zhǎng)為()A.13 B.16C.20 D.6.已知隨機(jī)變量,且,,則為()A.0.1358 B.0.2716C.0.1359 D.0.27187.已知直線與圓相交于,兩點(diǎn),則的取值范圍為()A. B.C. D.8.已知函數(shù)在處有極小值,則c的值為()A.2 B.4C.6 D.2或69.1852年英國(guó)來華傳教士偉烈亞力將《孫子算經(jīng)》中“物不知數(shù)”問題解法傳至歐洲,西方人稱之為“中國(guó)剩余定理”.現(xiàn)有這樣一個(gè)問題:將1到200中被3整除余1且被4整除余2的數(shù)按從小到大的順序排成一列,構(gòu)成數(shù)列,則=()A.130 B.132C.140 D.14410.已知是雙曲線的左焦點(diǎn),,是雙曲線右支上的動(dòng)點(diǎn),則的最小值為()A.9 B.8C.7 D.611.若直線與直線垂直,則a=()A.-2 B.0C.0或-2 D.112.下列結(jié)論正確的是()A.若,則 B.若,則C.若,則 D.若,則二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在直棱柱中,,則異面直線與所成角的余弦值為___________.14.已知,,若,則_________.15.我國(guó)著名數(shù)學(xué)家華羅庚曾說過:“數(shù)缺形時(shí)少直觀,形少數(shù)時(shí)難人微”.事實(shí)上,很多代數(shù)問題可以轉(zhuǎn)化為幾何問題加以解決,如:與相關(guān)的代數(shù)問題可以轉(zhuǎn)化為點(diǎn)與點(diǎn)之間距離的幾何問題.結(jié)合上述觀點(diǎn),可得方程的解是__________.16.已知,,且,則的最小值為___________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知圓C經(jīng)過點(diǎn),,且它的圓心C在直線上.(1)求圓C的方程;(2)過點(diǎn)作圓C的兩條切線,切點(diǎn)分別為M,N,求三角形PMN的面積.18.(12分)已知橢圓的離心率是,且過點(diǎn).直線與橢圓相交于兩點(diǎn).(Ⅰ)求橢圓的方程;(Ⅱ)求的面積的最大值;(Ⅲ)設(shè)直線,分別與軸交于點(diǎn),.判斷,大小關(guān)系,并加以證明.19.(12分)已知函數(shù)(1)當(dāng)在處取得極值時(shí),求函數(shù)的解析式;(2)當(dāng)?shù)臉O大值不小于時(shí),求的取值范圍20.(12分)已知拋物線的焦點(diǎn)為F,其中P為E的準(zhǔn)線上一點(diǎn),O是坐標(biāo)原點(diǎn),且(1)求拋物線E的方程;(2)過的直線與E交于C,D兩點(diǎn),在x軸上是否存在定點(diǎn),使得x軸平分?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由21.(12分)已知A(-3,0),B(3,0),四邊形AMBN的對(duì)角線交于點(diǎn)D(1,0),kMA與kMB的等比中項(xiàng)為,直線AM,NB相交于點(diǎn)P.(1)求點(diǎn)M的軌跡C的方程;(2)若點(diǎn)N也在C上,點(diǎn)P是否在定直線上?如果是,求出該直線,如果不是,請(qǐng)說明理由.22.(10分)如圖,在四棱錐中,底面ABCD是邊長(zhǎng)為2的正方形,為正三角形,且側(cè)面底面ABCD,(1)求證:平面ACM;(2)求平面MBC與平面DBC的夾角的大小
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】方程化為圓錐曲線(橢圓與雙曲線)標(biāo)準(zhǔn)方程的形式,然后由方程表示雙曲線可得不等關(guān)系【詳解】解:方程可化為,它表示雙曲線,則,解得.故選:A2、A【解析】求出、的值,可得出雙曲線的漸近線方程.【詳解】在雙曲線中,,,因此,該雙曲線的漸近線方程為.故選:A.3、C【解析】設(shè)出點(diǎn),,的坐標(biāo),將點(diǎn),分別代入橢圓方程兩式作差,構(gòu)造直線和的斜率之積,得到,即可求橢圓的離心率,利用,求出,可知點(diǎn)在軸上,且為的中點(diǎn),則.【詳解】設(shè),,,則,,,兩式相減并化簡(jiǎn)得,即,則,則AB錯(cuò)誤;∵,,∴,又∵,∴,即,解得,則點(diǎn)在軸上,且為的中點(diǎn)即,則正確.故選:C.4、D【解析】根據(jù)全稱命題與存在性命題的關(guān)系,準(zhǔn)確改寫,即可求解.【詳解】根據(jù)全稱命題與存在性命題的關(guān)系可得:命題“p:,”的否定式為“,”.故選:D.5、B【解析】利用橢圓的定義及即可得到答案.【詳解】由橢圓的定義,,焦距,所以的周長(zhǎng)為.故選:B6、C【解析】根據(jù)正態(tài)分布的對(duì)稱性可求概率.【詳解】由題設(shè)可得,,故選:C.7、C【解析】求得直線恒過的定點(diǎn),找出弦長(zhǎng)取得最值的狀態(tài),利用弦長(zhǎng)公式求解即可.【詳解】因直線方程為:,整理得,故該直線恒過定點(diǎn),又,故點(diǎn)在圓內(nèi),又圓的圓心為則,此時(shí)直線過圓心;當(dāng)直線與直線垂直時(shí),取得最小值,此時(shí).故的取值范圍為.故選:.8、A【解析】根據(jù)求出c,進(jìn)而得到函數(shù)的單調(diào)性,然后根據(jù)極小值的定義判斷答案.【詳解】由題意,,則,所以或.若c=2,則,時(shí),,單調(diào)遞增,時(shí),,單調(diào)遞減,時(shí),,單調(diào)遞增.函數(shù)在處有極小值,滿足題意;若c=6,則,函數(shù)R上單調(diào)遞增,不合題意.綜上:c=2.故選:A.9、A【解析】分析數(shù)列的特點(diǎn),可知其是等差數(shù)列,寫出其通項(xiàng)公式,進(jìn)而求得結(jié)果,【詳解】被3整除余1且被4整除余2的數(shù)按從小到大的順序排成一列,這樣的數(shù)構(gòu)成首項(xiàng)為10,公差為12的等差數(shù)列,所以,故,故選:A.10、A【解析】由雙曲線方程求出,再根據(jù)點(diǎn)在雙曲線的兩支之間,結(jié)合可求得答案【詳解】由,得,則,所以左焦點(diǎn)為,右焦點(diǎn),則由雙曲線的定義得,因?yàn)辄c(diǎn)在雙曲線的兩支之間,所以,所以,當(dāng)且僅當(dāng)三點(diǎn)共線時(shí)取等號(hào),所以的最小值為9,故選:A11、C【解析】代入兩直線垂直的公式,即可求解.【詳解】因?yàn)閮芍本€垂直,所以,解得:或.故選:C12、C【解析】先舉例說明ABD不成立,再根據(jù)不等式性質(zhì)說明C成立.【詳解】當(dāng)時(shí),滿足,但不成立,所以A錯(cuò);當(dāng)時(shí),滿足,但不成立,所以B錯(cuò);當(dāng)時(shí),滿足,但不成立,所以D錯(cuò);因?yàn)樗?,又,因此同向不等式相加得,即C對(duì);故選:C【點(diǎn)睛】本題考查不等式性質(zhì),考查基本分析判斷能力,屬基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】建立空間直角坐標(biāo)系后求相關(guān)的向量后再用夾角公式運(yùn)算即可.【詳解】如圖,以C為坐標(biāo)原點(diǎn),所在直線為x,y,z軸,建立空間直角坐標(biāo)系,則,所以,所以,故異面直線與所成角的余弦值為,故答案為:.14、【解析】由題意,,利用向量數(shù)量積的坐標(biāo)運(yùn)算可得,然后利用定積分性質(zhì)可得,原式,最后利用微積分基本定理計(jì)算,,利用定積分的幾何意義計(jì)算,即可得答案.【詳解】解:因?yàn)?,,且,所以,解得,所?===.故答案為:.15、【解析】根據(jù)題意,列方程計(jì)算即可【詳解】因?yàn)?,所以,可轉(zhuǎn)化為點(diǎn)到點(diǎn)和點(diǎn)的距離之和為,所以點(diǎn)在橢圓上,則,解得.故答案為:16、25【解析】根據(jù),,且,由,利用基本不等式求解.【詳解】因?yàn)?,,且,所以,?dāng)且僅當(dāng),即時(shí),等號(hào)成立,所以的最小值為25,故答案為:25三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)由題設(shè)知,設(shè)圓心,應(yīng)用兩點(diǎn)距離公式列方程求參數(shù)a,進(jìn)而確定圓心坐標(biāo)、半徑,寫出圓C的方程;(2)利用兩點(diǎn)距離公式、切線的性質(zhì)可得、,再應(yīng)用三角形面積公式求三角形PMN的面積.【小問1詳解】由已知,可設(shè)圓心,且,從而有,解得.所以圓心,半徑.所以,圓C的方程為.【小問2詳解】連接PC,CM,CN,MN,由(1)知:圓心,半徑.所以.又PM,PN是圓C的切線,所以,,則,,所以,所以.18、(1)(2)(3)見解析【解析】(1)由題意求得,所以橢圓的方程為(2)聯(lián)立直線與橢圓方程,由題意可得.三角形的高為.,面積表達(dá)式,當(dāng)且僅當(dāng)時(shí),.即的面積的最大值是(3)結(jié)論為.利用題意有.所以試題解析:解:(Ⅰ)設(shè)橢圓的半焦距為因?yàn)闄E圓的離心率是,所以,即由解得所以橢圓的方程為(Ⅱ)將代入,消去整理得令,解得設(shè)則,所以點(diǎn)到直線的距離為所以的面積,當(dāng)且僅當(dāng)時(shí),所以的面積的最大值是(Ⅲ).證明如下:設(shè)直線,的斜率分別是,,則由(Ⅱ)得,所以直線,的傾斜角互補(bǔ)所以,所以所以19、(1);(2).【解析】(1)對(duì)函數(shù)求導(dǎo),根據(jù)求出m,并驗(yàn)證此時(shí)函數(shù)在x=1處取得極值,進(jìn)而求得答案;(2)對(duì)函數(shù)求導(dǎo),進(jìn)而求出函數(shù)的單調(diào)區(qū)間和極大值,然后求出m的范圍.【小問1詳解】因?yàn)?,所?因?yàn)樵谔幦〉脴O值,所以,所以,此時(shí),時(shí),,單調(diào)遞減,時(shí),,單調(diào)遞增,即在處取得極小值,故.【小問2詳解】,令,解得.時(shí),,單調(diào)遞增,時(shí),,單調(diào)遞減,時(shí),,單調(diào)遞增.,即的取值范圍是.20、(1)(2)存在;【解析】(1)設(shè),利用向量坐標(biāo)運(yùn)算求出p即可;(2)設(shè)直線MC,MD的斜率分別為,,利用坐標(biāo)計(jì)算恒成立,即可求解.【小問1詳解】拋物線的焦點(diǎn)為,設(shè),則,因?yàn)?,所以,得所以拋物線E的方程為【小問2詳解】假設(shè)在x軸上存在定點(diǎn),使得x軸平分設(shè)直線的方程為,設(shè)點(diǎn),,聯(lián)立,可得∵恒成立,∴,設(shè)直線MC,MD的斜率分別為,,則由定點(diǎn),使得x軸平分,則,所以把根與系數(shù)的關(guān)系代入可得,得故存在滿足題意.綜上所述,在x軸上存在定點(diǎn),使得x軸平分21、(1);(2)點(diǎn)P在定直線x=9上.理由見解析.【解析】(1)設(shè)點(diǎn),根據(jù)兩點(diǎn)坐標(biāo)距離公式和等比數(shù)列的等比中項(xiàng)的應(yīng)用列出方程,整理方程即可;(2)設(shè)直線MN方程為:,點(diǎn),聯(lián)立雙曲線方程消去x得到關(guān)于y的一元二次方程,根據(jù)韋達(dá)定理寫出,利用兩點(diǎn)坐標(biāo)和直線的點(diǎn)斜式方程寫出直線PA、PB,聯(lián)立方程組,解方程組即可.【小問1詳解】設(shè)點(diǎn),則,又,所以,整理,得,即軌跡M的方程C為:;【小問2詳解】點(diǎn)P在定直線上.由(1)知,曲線C方程為:,直線MN過點(diǎn)D(1,0)若直線MN斜率不存在,則,得,不符合題意;設(shè)直線MN方程為:,點(diǎn),則,消去x,得,有,,,,所以直線PA方程為:,直線PB方程為:,所以點(diǎn)P的坐標(biāo)為方程組的解,有,即,整理,得,解得,即點(diǎn)P在定直線上.22、(1)證明見解析(2)30°【解析】(1)連接BD,借助三角形中位線可證;(2)建立空間直角坐標(biāo)系,利用向量法直接可求.【小
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年全球及中國(guó)高效微??諝膺^濾器行業(yè)頭部企業(yè)市場(chǎng)占有率及排名調(diào)研報(bào)告
- 2024年拉絲工職業(yè)技能競(jìng)賽理論考試題庫(含答案)
- 2025年度個(gè)人發(fā)明專利獨(dú)占許可合同范本3篇
- 2025年度個(gè)人旅游定制服務(wù)合同19篇
- 《財(cái)政與金融(第2版)》 課件 第十三章國(guó)際金融
- 二零二五年度打磨工勞動(dòng)爭(zhēng)議調(diào)解合同3篇
- 現(xiàn)代學(xué)校安全管理技術(shù)探討
- 池州安徽池州石臺(tái)縣消防救援大隊(duì)招聘3人筆試歷年參考題庫附帶答案詳解
- 曲靖云南曲靖富源縣公安局交通警察大隊(duì)指揮中心招聘警務(wù)輔助人員筆試歷年參考題庫附帶答案詳解
- 2025年滬教版選擇性必修1物理下冊(cè)階段測(cè)試試卷
- 2024年安全教育培訓(xùn)試題附完整答案(奪冠系列)
- 神農(nóng)架研學(xué)課程設(shè)計(jì)
- 文化資本與民族認(rèn)同建構(gòu)-洞察分析
- 2025新譯林版英語七年級(jí)下單詞默寫表
- 【超星學(xué)習(xí)通】馬克思主義基本原理(南開大學(xué))爾雅章節(jié)測(cè)試網(wǎng)課答案
- 《錫膏培訓(xùn)教材》課件
- 斷絕父子關(guān)系協(xié)議書
- 福建省公路水運(yùn)工程試驗(yàn)檢測(cè)費(fèi)用參考指標(biāo)
- 2024年中國(guó)工業(yè)涂料行業(yè)發(fā)展現(xiàn)狀、市場(chǎng)前景、投資方向分析報(bào)告(智研咨詢發(fā)布)
- 自然科學(xué)基礎(chǔ)(小學(xué)教育專業(yè))全套教學(xué)課件
- 《工程勘察資質(zhì)分級(jí)標(biāo)準(zhǔn)和工程設(shè)計(jì)資質(zhì)分級(jí)標(biāo)準(zhǔn)》
評(píng)論
0/150
提交評(píng)論