陜西省西安市雁塔區(qū)高新一中達標名校2024年中考數(shù)學最后一模試卷含解析_第1頁
陜西省西安市雁塔區(qū)高新一中達標名校2024年中考數(shù)學最后一模試卷含解析_第2頁
陜西省西安市雁塔區(qū)高新一中達標名校2024年中考數(shù)學最后一模試卷含解析_第3頁
陜西省西安市雁塔區(qū)高新一中達標名校2024年中考數(shù)學最后一模試卷含解析_第4頁
陜西省西安市雁塔區(qū)高新一中達標名校2024年中考數(shù)學最后一模試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

陜西省西安市雁塔區(qū)高新一中達標名校2024年中考數(shù)學最后一模試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.下列運算正確的是()A.x?x4=x5 B.x6÷x3=x2 C.3x2﹣x2=3 D.(2x2)3=6x62.如圖,小巷左右兩側是豎直的墻,一架梯子斜靠在左墻時,梯子底端到左墻角的距離為0.7米,頂端距離地面2.4米,如果保持梯子底端位置不動,將梯子斜靠在右墻時,頂端距離地面2米,那么小巷的寬度為()A.0.7米 B.1.5米 C.2.2米 D.2.4米3.已知一組數(shù)據(jù),,,,的平均數(shù)是2,方差是,那么另一組數(shù)據(jù),,,,,的平均數(shù)和方差分別是.A. B. C. D.4.一元二次方程3x2-6x+4=0根的情況是A.有兩個不相等的實數(shù)根 B.有兩個相等的實數(shù)根 C.有兩個實數(shù)根 D.沒有實數(shù)根5.如圖,△ABC中,D、E分別為AB、AC的中點,已知△ADE的面積為1,那么△ABC的面積是()A.2 B.3 C.4 D.56.我國古代數(shù)學家劉徽創(chuàng)立的“割圓術”可以估算圓周率π,理論上能把π的值計算到任意精度.祖沖之繼承并發(fā)展了“割圓術”,將π的值精確到小數(shù)點后第七位,這一結果領先世界一千多年,“割圓術”的第一步是計算半徑為1的圓內接正六邊形的面積S6,則S6的值為()A. B.2 C. D.7.已知△ABC中,∠BAC=90°,用尺規(guī)過點A作一條直線,使其將△ABC分成兩個相似的三角形,其作法不正確的是(

)A.

B.C.

D.8.不等式5+2x<1的解集在數(shù)軸上表示正確的是().A. B. C. D.9.已知二次函數(shù)y=﹣(x﹣h)2+1(為常數(shù)),在自變量x的值滿足1≤x≤3的情況下,與其對應的函數(shù)值y的最大值為﹣5,則h的值為()A.3﹣或1+ B.3﹣或3+C.3+或1﹣ D.1﹣或1+10.多項式4a﹣a3分解因式的結果是()A.a(chǎn)(4﹣a2)B.a(chǎn)(2﹣a)(2+a)C.a(chǎn)(a﹣2)(a+2)D.a(chǎn)(2﹣a)2二、填空題(共7小題,每小題3分,滿分21分)11.已知二次函數(shù)的圖象開口向上,且經(jīng)過原點,試寫出一個符合上述條件的二次函數(shù)的解析式:_____.(只需寫出一個)12.方程=1的解是_____.13.若一次函數(shù)y=-2x+b(b為常數(shù))的圖象經(jīng)過第二、三、四象限,則b的值可以是_________.(寫出一個即可)14.如圖,ΔABC中,∠ACB=90°,∠ABC=25°,以點C為旋轉中心順時針旋轉后得到ΔA′B′C′,且點A在A′B′上,則旋轉角為________________°.15.在數(shù)軸上與所對應的點相距4個單位長度的點表示的數(shù)是______.16.若分式方程有增根,則m的值為______.17.將直尺和直角三角尺按如圖方式擺放.若,,則________.三、解答題(共7小題,滿分69分)18.(10分)(1)解不等式組:;(2)解方程:.19.(5分)武漢市某中學的一個數(shù)學興趣小組在本校學生中開展主題為“垃圾分類知多少”的專題調查活動,采取隨機抽樣的方式進行問卷調查,問卷詞查的結果分為“非常了解“、“比較了解”、“只聽說過”,“不了解”四個等級,劃分等級后的數(shù)據(jù)整理如下表:等級非常了解比較了解只聽說過不了解頻數(shù)40120364頻率0.2m0.180.02(1)本次問卷調查取樣的樣本容量為,表中的m值為;(2)在扇形圖中完善數(shù)據(jù),寫出等級及其百分比;根據(jù)表中的數(shù)據(jù)計算等級為“非常了解”的頻數(shù)在扇形統(tǒng)計圖所對應的扇形的圓心角的度數(shù);(3)若該校有學生1500人,請根據(jù)調查結果估計這些學生中“比較了解”垃圾分類知識的人數(shù)約為多少?20.(8分)某超市在春節(jié)期間開展優(yōu)惠活動,凡購物者可以通過轉動轉盤的方式享受折扣和優(yōu)惠,在每個轉盤中指針指向每個區(qū)域的可能性均相同,若指針指向分界線,則重新轉動轉盤,區(qū)域對應的優(yōu)惠方式如下,A1,A2,A3區(qū)域分別對應9折8折和7折優(yōu)惠,B1,B2,B3,B4區(qū)域對應不優(yōu)惠?本次活動共有兩種方式.方式一:轉動轉盤甲,指針指向折扣區(qū)域時,所購物品享受對應的折扣優(yōu)惠,指針指向其他區(qū)域無優(yōu)惠;方式二:同時轉動轉盤甲和轉盤乙,若兩個轉盤的指針均指向折扣區(qū)域時,所購物品享受折上折的優(yōu)惠,其他情況無優(yōu)惠.(1)若顧客選擇方式一,則享受優(yōu)惠的概率為;(2)若顧客選擇方式二,請用樹狀圖或列表法列出所有可能顧客享受折上折優(yōu)惠的概率.21.(10分)如圖,在△ABC中,∠C=90°,E是BC上一點,ED⊥AB,垂足為D.求證:△ABC∽△EBD.22.(10分)如圖,點A在∠MON的邊ON上,AB⊥OM于B,AE=OB,DE⊥ON于E,AD=AO,DC⊥OM于C.求證:四邊形ABCD是矩形;若DE=3,OE=9,求AB、AD的長.23.(12分)在△ABC中,∠BAC=90°,AB=AC,點D為直線BC上一動點(點D不與點B、C重合),以AD為直角邊在AD右側作等腰三角形ADE,使∠DAE=90°,連接CE.探究:如圖①,當點D在線段BC上時,證明BC=CE+CD.應用:在探究的條件下,若AB=,CD=1,則△DCE的周長為.拓展:(1)如圖②,當點D在線段CB的延長線上時,BC、CD、CE之間的數(shù)量關系為.(2)如圖③,當點D在線段BC的延長線上時,BC、CD、CE之間的數(shù)量關系為.24.(14分)如圖,在四邊形中,為的中點,于點,,,,求的度數(shù).

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】根據(jù)同底數(shù)冪的乘法,同底數(shù)冪的除法,合并同類項,冪的乘方與積的乘方運算法則逐一計算作出判斷:A、x?x4=x5,原式計算正確,故本選項正確;B、x6÷x3=x3,原式計算錯誤,故本選項錯誤;C、3x2﹣x2=2x2,原式計算錯誤,故本選項錯誤;D、(2x2)3=8x,原式計算錯誤,故本選項錯誤.故選A.2、C【解析】

在直角三角形中利用勾股定理計算出直角邊,即可求出小巷寬度.【詳解】在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B′2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故選C.【點睛】本題考查勾股定理的運用,利用梯子長度不變找到斜邊是關鍵.3、D【解析】

根據(jù)數(shù)據(jù)的變化和其平均數(shù)及方差的變化規(guī)律求得新數(shù)據(jù)的平均數(shù)及方差即可.【詳解】解:∵數(shù)據(jù)x1,x2,x3,x4,x5的平均數(shù)是2,∴數(shù)據(jù)3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的平均數(shù)是3×2-2=4;∵數(shù)據(jù)x1,x2,x3,x4,x5的方差為,∴數(shù)據(jù)3x1,3x2,3x3,3x4,3x5的方差是×32=3,∴數(shù)據(jù)3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的方差是3,故選D.【點睛】本題考查了方差的知識,說明了當數(shù)據(jù)都加上一個數(shù)(或減去一個數(shù))時,平均數(shù)也加或減這個數(shù),方差不變,即數(shù)據(jù)的波動情況不變;當數(shù)據(jù)都乘以一個數(shù)(或除以一個數(shù))時,平均數(shù)也乘以或除以這個數(shù),方差變?yōu)檫@個數(shù)的平方倍.4、D【解析】

根據(jù)?=b2-4ac,求出?的值,然后根據(jù)?的值與一元二次方程根的關系判斷即可.【詳解】∵a=3,b=-6,c=4,∴?=b2-4ac=(-6)2-4×3×4=-12<0,∴方程3x2-6x+4=0沒有實數(shù)根.故選D.【點睛】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式?=b2﹣4ac:當?>0時,一元二次方程有兩個不相等的實數(shù)根;當?=0時,一元二次方程有兩個相等的實數(shù)根;當?<0時,一元二次方程沒有實數(shù)根.5、C【解析】

根據(jù)三角形的中位線定理可得DE∥BC,=,即可證得△ADE∽△ABC,根據(jù)相似三角形面積的比等于相似比的平方可得=,已知△ADE的面積為1,即可求得S△ABC=1.【詳解】∵D、E分別是AB、AC的中點,∴DE是△ABC的中位線,∴DE∥BC,=,∴△ADE∽△ABC,∴=()2=,∵△ADE的面積為1,∴S△ABC=1.故選C.【點睛】本題考查了三角形的中位線定理及相似三角形的判定與性質,先證得△ADE∽△ABC,根據(jù)相似三角形面積的比等于相似比的平方得到=是解決問題的關鍵.6、C【解析】

根據(jù)題意畫出圖形,結合圖形求出單位圓的內接正六邊形的面積.【詳解】如圖所示,單位圓的半徑為1,則其內接正六邊形ABCDEF中,△AOB是邊長為1的正三角形,所以正六邊形ABCDEF的面積為S6=6××1×1×sin60°=.故選C.【點睛】本題考查了已知圓的半徑求其內接正六邊形面積的應用問題,關鍵是根據(jù)正三角形的面積,正n邊形的性質解答.7、D【解析】分析:根據(jù)過直線外一點作這條直線的垂線,及線段中垂線的做法,圓周角定理,分別作出直角三角形斜邊上的垂線,根據(jù)直角三角形斜邊上的垂線,把原直角三角形分成了兩個小直角三角形,圖中的三個直角三角形式彼此相似的;即可作出判斷.詳解:A、在角∠BAC內作作∠CAD=∠B,交BC于點D,根據(jù)余角的定義及等量代換得出∠B+∠BAD=90°,進而得出AD⊥BC,根據(jù)直角三角形斜邊上的垂線,把原直角三角形分成了兩個小直角三角形,圖中的三個直角三角形式彼此相似的;A不符合題意;B、以點A為圓心,略小于AB的長為半徑,畫弧,交線段BC兩點,再分別以這兩點為圓心,大于兩交點間的距離為半徑畫弧,兩弧相交于一點,過這一點與A點作直線,該直線是BC的垂線;根據(jù)直角三角形斜邊上的垂線,把原直角三角形分成了兩個小直角三角形,圖中的三個直角三角形是彼此相似的;B不符合題意;C、以AB為直徑作圓,該圓交BC于點D,根據(jù)圓周角定理,過AD兩點作直線該直線垂直于BC,根據(jù)直角三角形斜邊上的垂線,把原直角三角形分成了兩個小直角三角形,圖中的三個直角三角形式彼此相似的;C不符合題意;D、以點B為圓心BA的長為半徑畫弧,交BC于點E,再以E點為圓心,AB的長為半徑畫弧,在BC的另一側交前弧于一點,過這一點及A點作直線,該直線不一定是BE的垂線;從而就不能保證兩個小三角形相似;D符合題意;故選D.點睛:此題主要考查了相似變換以及相似三角形的判定,正確掌握相似三角形的判定方法是解題關鍵.8、C【解析】

先解不等式得到x<-1,根據(jù)數(shù)軸表示數(shù)的方法得到解集在-1的左邊.【詳解】5+1x<1,移項得1x<-4,系數(shù)化為1得x<-1.故選C.【點睛】本題考查了在數(shù)軸上表示不等式的解集:先求出不等式組的解集,然后根據(jù)數(shù)軸表示數(shù)的方法把對應的未知數(shù)的取值范圍通過畫區(qū)間的方法表示出來,等號時用實心,不等時用空心.9、C【解析】

∵當x<h時,y隨x的增大而增大,當x>h時,y隨x的增大而減小,∴①若h<1≤x≤3,x=1時,y取得最大值-5,可得:-(1-h)2+1=-5,解得:h=1-或h=1+(舍);②若1≤x≤3<h,當x=3時,y取得最大值-5,可得:-(3-h)2+1=-5,解得:h=3+或h=3-(舍).綜上,h的值為1-或3+,故選C.點睛:本題主要考查二次函數(shù)的性質和最值,根據(jù)二次函數(shù)的增減性和最值分兩種情況討論是解題的關鍵.10、B【解析】

首先提取公因式a,再利用平方差公式分解因式得出答案.【詳解】4a﹣a3=a(4﹣a2)=a(2﹣a)(2+a).故選:B.【點睛】此題主要考查了提取公因式法以及公式法分解因式,正確運用公式是解題關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、y=x2等【解析】分析:根據(jù)二次函數(shù)的圖象開口向上知道a>1,又二次函數(shù)的圖象過原點,可以得到c=1,所以解析式滿足a>1,c=1即可.詳解:∵二次函數(shù)的圖象開口向上,∴a>1.∵二次函數(shù)的圖象過原點,∴c=1.故解析式滿足a>1,c=1即可,如y=x2.故答案為y=x2(答案不唯一).點睛:本題是開放性試題,考查了二次函數(shù)的性質,二次函數(shù)圖象上點的坐標特征,對考查學生所學函數(shù)的深入理解、掌握程度具有積極的意義,但此題若想答對需要滿足所有條件,如果學生沒有注意某一個條件就容易出錯.本題的結論是不唯一的,其解答思路滲透了數(shù)形結合的數(shù)學思想.12、x=3【解析】去分母得:x﹣1=2,解得:x=3,經(jīng)檢驗x=3是分式方程的解,故答案為3.【點睛】本題主要考查解分式方程,解分式方程的思路是將分式方程化為整式方程,然后求解.去分母后解出的結果須代入最簡公分母進行檢驗,結果為零,則原方程無解;結果不為零,則為原方程的解.13、-1【解析】試題分析:根據(jù)一次函數(shù)的圖象經(jīng)過第二、三、四象限,可以得出k<1,b<1,隨便寫出一個小于1的b值即可.∵一次函數(shù)y=﹣2x+b(b為常數(shù))的圖象經(jīng)過第二、三、四象限,∴k<1,b<1.考點:一次函數(shù)圖象與系數(shù)的關系14、50度【解析】

由將△ACB繞點C順時針旋轉得到△A′B′C′,即可得△ACB≌△A′B′C′,則可得∠A'=∠BAC,△AA'C是等腰三角形,又由△ACB中,∠ACB=90°,∠ABC=25°,即可求得∠A'、∠B'AB的度數(shù),即可求得∠ACB'的度數(shù),繼而求得∠B'CB的度數(shù).【詳解】∵將△ACB繞點C順時針旋轉得到,∴△ACB≌,∴∠A′=∠BAC,AC=CA′,∴∠BAC=∠CAA′,∵△ACB中,∠ACB=90°,∠ABC=25°,∴∠BAC=90°?∠ABC=65°,∴∠BAC=∠CAA′=65°,∴∠B′AB=180°?65°?65°=50°,∴∠ACB′=180°?25°?50°?65°=40°,∴∠B′CB=90°?40°=50°.故答案為50.【點睛】此題考查了旋轉的性質、直角三角形的性質以及等腰三角形的性質.此題難度不大,注意掌握旋轉前后圖形的對應關系,注意數(shù)形結合思想的應用.15、2或﹣1【解析】解:當該點在﹣2的右邊時,由題意可知:該點所表示的數(shù)為2,當該點在﹣2的左邊時,由題意可知:該點所表示的數(shù)為﹣1.故答案為2或﹣1.點睛:本題考查數(shù)軸,涉及有理數(shù)的加減運算、分類討論的思想.16、-1【解析】

增根是分式方程化為整式方程后產(chǎn)生的使分式方程的分母為0的根.把增根代入化為整式方程的方程即可求出m的值.【詳解】方程兩邊都乘(x-1),得x-1(x-1)=-m∵原方程增根為x=1,∴把x=1代入整式方程,得m=-1,故答案為:-1.【點睛】本題考查了分式方程的增根,增根確定后可按如下步驟進行:化分式方程為整式方程;把增根代入整式方程即可求得相關字母的值.17、80°.【解析】

由于直尺外形是矩形,根據(jù)矩形的性質可知對邊平行,所以∠4=∠3,再根據(jù)外角的性質即可求出結果.【詳解】解:如圖所示,依題意得:∠4=∠3,∵∠4=∠2+∠1=80°∴∠3=80°.故答案為80°.【點睛】本題考查了平行線的性質和三角形外角的性質,掌握三角形外角的性質是解題的關鍵.三、解答題(共7小題,滿分69分)18、(1)﹣2≤x<2;(2)x=.【解析】

(1)先求出不等式組中每個不等式的解集,再求出不等式組的解集即可;(2)先把分式方程轉化成整式方程,求出整式方程的解,再進行檢驗即可.【詳解】(1),∵解不等式①得:x<2,解不等式②得:x≥﹣2,∴不等式組的解集為﹣2≤x<2;(2)方程兩邊都乘以(2x﹣1)(x﹣2)得2x(x﹣2)+x(2x﹣1)=2(x﹣2)(2x﹣1),解得:x=,檢驗:把x=代入(2x﹣1)(x﹣2)≠0,所以x=是原方程的解,即原方程的解是x=.【點睛】本題考查了解一元一次不等式組和解分式方程,根據(jù)不等式的解集找出不等式組的解集是解(1)的關鍵,能把分式方程轉化成整式方程是解(2)的關鍵.19、(1)200;0.6(2)非常了解20%,比較了解60%;72°;(3)900人【解析】

(1)根據(jù)非常了解的頻數(shù)與頻率即可求出本次問卷調查取樣的樣本容量,用1減去各等級的頻率即可得到m值;(2)根據(jù)非常了解的頻率、比較了解的頻率即可求出其百分比,與非常了解的圓心角度數(shù);(3)用全校人數(shù)乘以非常了解的頻率即可.【詳解】解:(1)本次問卷調查取樣的樣本容量為40÷0.2=200;m=1-0.2-0.18-0.02=0.6(2)非常了解20%,比較了解60%;非常了解的圓心角度數(shù):360°×20%=72°(3)1500×60%=900(人)答:“比較了解”垃圾分類知識的人數(shù)約為900人.【點睛】此題主要考查扇形統(tǒng)計圖的應用,解題的關鍵是根據(jù)頻數(shù)與頻率求出調查樣本的容量.20、(1);(2).【解析】

(1)根據(jù)題意和圖形,可以求得顧客選擇方式一,享受優(yōu)惠的概率;(2)根據(jù)題意可以畫出相應的樹狀圖,從而可以求得相應的概率.【詳解】解:(1)由題意可得,顧客選擇方式一,則享受優(yōu)惠的概率為:,故答案為:;(2)樹狀圖如下圖所示,則顧客享受折上折優(yōu)惠的概率是:,即顧客享受折上折優(yōu)惠的概率是.【點睛】本題考查列表法與樹狀圖法,解答本題的關鍵是明確題意,列出相應的樹狀圖,求出相應的概率.21、證明見解析【解析】試題分析:先根據(jù)垂直的定義得出∠EDB=90°,故可得出∠EDB=∠C.再由∠B=∠B,根據(jù)有兩個角相等的兩三角形相似即可得出結論.試題解析:解:∵ED⊥AB,∴∠EDB=90°.∵∠C=90°,∴∠EDB=∠C.∵∠B=∠B,∴∽.點睛:本題考查的是相似三角形的判定,熟知有兩組角對應相等的兩個三角形相似是解答此題的關鍵.22、(1)證明見解析;(2)AB、AD的長分別為2和1.【解析】

(1)證Rt△ABO≌Rt△DEA(HL)得∠AOB=∠DAE,AD∥BC.證四邊形ABCD是平行四邊形,又,故四邊形ABCD是矩形;(2)由(1)知Rt△ABO≌Rt△DEA,AB=DE=2.設AD=x,則OA=x,AE=OE-OA=9-x.在Rt△DEA中,由得:.【詳解】(1)證明:∵AB⊥OM于B,DE⊥ON于E,∴.在Rt△ABO與Rt△DEA中,∵∴Rt△ABO≌Rt△DEA(HL).∴∠AOB=∠DAE.∴AD∥BC.又∵AB⊥OM,DC⊥OM,∴AB∥DC.∴四邊形ABCD是平行四邊形.∵,∴四邊形ABCD是矩形;(2)由(1)知Rt△ABO≌Rt△DEA,∴AB=DE=2.設AD=x,則OA=x,AE=OE-OA=9-x.在Rt△DEA中,由得:,解得.∴AD=1.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論