山西運城東康中學2024年中考數(shù)學模擬預測題含解析_第1頁
山西運城東康中學2024年中考數(shù)學模擬預測題含解析_第2頁
山西運城東康中學2024年中考數(shù)學模擬預測題含解析_第3頁
山西運城東康中學2024年中考數(shù)學模擬預測題含解析_第4頁
山西運城東康中學2024年中考數(shù)學模擬預測題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

山西運城東康中學2024年中考數(shù)學模擬預測題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.某運動器材的形狀如圖所示,以箭頭所指的方向為左視方向,則它的主視圖可以是()A.B.C.D.2.在下面四個幾何體中,從左面看、從上面看分別得到的平面圖形是長方形、圓,這個幾何體是()A. B. C. D.3.如圖,M是△ABC的邊BC的中點,AN平分∠BAC,BN⊥AN于點N,且AB=10,BC=15,MN=3,則AC的長是()A.12 B.14 C.16 D.184.下列計算正確的是()A.+= B.﹣= C.×=6 D.=45.二次函數(shù)y=a(x-4)2-4(a≠0)的圖象在2<x<3這一段位于x軸的下方,在6<x<7這一段位于x軸的上方,則a的值為(

)A.1

B.-1

C.2

D.-26.在平面直角坐標系中,有兩條拋物線關于x軸對稱,且他們的頂點相距10個單位長度,若其中一條拋物線的函數(shù)表達式為y=+6x+m,則m的值是()A.-4或-14 B.-4或14 C.4或-14 D.4或147.如圖,在Rt△ABC中,∠ACB=90°,AC=BC=1,將繞點A逆時針旋轉30°后得到Rt△ADE,點B經過的路徑為弧BD,則圖中陰影部分的面積是()A. B. C.- D.8.函數(shù)y=1-xA.x>1 B.x<1 C.x≤1 D.x≥19.根據中國鐵路總公司3月13日披露,2018年鐵路春運自2月1日起至3月12日止,為期40天全國鐵路累計發(fā)送旅客3.82億人次.3.82億用科學記數(shù)法可以表示為()A.3.82×107 B.3.82×108 C.3.82×109 D.0.382×101010.如圖,△ABC是⊙O的內接三角形,AD⊥BC于D點,且AC=5,CD=3,BD=4,則⊙O的直徑等于()A.52 B.32 C.5二、填空題(共7小題,每小題3分,滿分21分)11.當a<0,b>0時.化簡:=_____.12.反比例函數(shù)的圖象經過點(﹣3,2),則k的值是_____.當x大于0時,y隨x的增大而_____.(填增大或減小)13.如圖,在直角坐標系中,點A(2,0),點B(0,1),過點A的直線l垂直于線段AB,點P是直線l上一動點,過點P作PC⊥x軸,垂足為C,把△ACP沿AP翻折,使點C落在點D處,若以A,D,P為頂點的三角形與△ABP相似,則所有滿足此條件的點P的坐標為___________________________.14.如圖,在四邊形ABCD中,點E、F分別是邊AB、AD的中點,BC=15,CD=9,EF=6,∠AFE=50°,則∠ADC的度數(shù)為_____.15.如圖,在3×3的方格中,A、B、C、D、E、F分別位于格點上,從C、D、E、F四點中任取一點,與點A、B為頂點作三角形,則所作三角形為等腰三角形的概率是__.16.有6張卡片,每張卡片上分別寫有不同的從1到6的一個自然數(shù),從中任意抽出一張卡片,卡片上的數(shù)是3的倍數(shù)的概率是17.如圖,在矩形ABCD中,AD=4,點P是直線AD上一動點,若滿足△PBC是等腰三角形的點P有且只有3個,則AB的長為.三、解答題(共7小題,滿分69分)18.(10分)灞橋區(qū)教育局為了了解七年級學生參加社會實踐活動情況,隨機抽取了鐵一中濱河學部分七年級學生2016﹣2017學年第一學期參加實踐活動的天數(shù),并用得到的數(shù)據繪制了兩幅統(tǒng)計圖,下面給出了兩幅不完整的統(tǒng)計圖.請根據圖中提供的信息,回答下列問題:a=%,并補全條形圖.在本次抽樣調查中,眾數(shù)和中位數(shù)分別是多少?如果該區(qū)共有七年級學生約9000人,請你估計活動時間不少于6天的學生人數(shù)大約有多少?19.(5分)如圖,AC是⊙O的直徑,PA切⊙O于點A,點B是⊙O上的一點,且∠BAC=30°,∠APB=60°.(1)求證:PB是⊙O的切線;(2)若⊙O的半徑為2,求弦AB及PA,PB的長.20.(8分)如圖,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,將△DEF與△ABC重合在一起,△ABC不動,△DEF運動,并滿足:點E在邊BC上沿B到C的方向運動,且DE始終經過點A,EF與AC交于M點.(1)求證:△ABE∽△ECM;(2)探究:在△DEF運動過程中,重疊部分能否構成等腰三角形?若能,求出BE的長;若不能,請說明理由;(3)當線段AM最短時,求重疊部分的面積.21.(10分)如圖,某次中俄“海上聯(lián)合”反潛演習中,我軍艦A測得潛艇C的俯角為30°.位于軍艦A正上方1000米的反潛直升機B側得潛艇C的俯角為68°.試根據以上數(shù)據求出潛艇C離開海平面的下潛深度.(結果保留整數(shù).參考數(shù)據:sin68°≈0.9,cos68°≈0.4,tan68°≈2.5,≈1.7)22.(10分)某數(shù)學教師為了解所教班級學生完成數(shù)學課前預習的具體情況,對該班部分學生進行了一學期的跟蹤調查,將調查結果分為四類并給出相應分數(shù),A:很好,95分;B:較好75分;C:一般,60分;D:較差,30分.并將調查結果繪制成以下兩幅不完整的統(tǒng)計圖,請你根據統(tǒng)計圖解答下列問題:(Ⅰ)該教師調查的總人數(shù)為,圖②中的m值為;(Ⅱ)求樣本中分數(shù)值的平均數(shù)、眾數(shù)和中位數(shù).23.(12分)如圖,∠A=∠D,∠B=∠E,AF=DC.求證:BC=EF.24.(14分)如圖1,已知△ABC是等腰直角三角形,∠BAC=90°,點D是BC的中點.作正方形DEFG,使點A、C分別在DG和DE上,連接AE,BG.試猜想線段BG和AE的數(shù)量關系是_____;將正方形DEFG繞點D逆時針方向旋轉α(0°<α≤360°),①判斷(1)中的結論是否仍然成立?請利用圖2證明你的結論;②若BC=DE=4,當AE取最大值時,求AF的值.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】從幾何體的正面看可得下圖,故選B.2、A【解析】試題分析:由題意可知:從左面看得到的平面圖形是長方形是柱體,從上面看得到的平面圖形是圓的是圓柱或圓錐,綜合得出這個幾何體為圓柱,由此選擇答案即可.解:從左面看得到的平面圖形是長方形是柱體,符合條件的有A、C、D,從上面看得到的平面圖形是圓的是圓柱或圓錐,符合條件的有A、B,綜上所知這個幾何體是圓柱.故選A.考點:由三視圖判斷幾何體.3、C【解析】延長線段BN交AC于E.∵AN平分∠BAC,∴∠BAN=∠EAN.在△ABN與△AEN中,∵∠BAN=∠EAN,AN=AN,∠ANB=∠ANE=90°,∴△ABN≌△AEN(ASA),∴AE=AB=10,BN=NE.又∵M是△ABC的邊BC的中點,∴CE=2MN=2×3=6,∴AC=AE+CE=10+6=16.故選C.4、B【解析】

根據同類二次根式才能合并可對A進行判斷;根據二次根式的乘法對B進行判斷;先把化為最簡二次根式,然后進行合并,即可對C進行判斷;根據二次根式的除法對D進行判斷.【詳解】解:A、與不能合并,所以A選項不正確;B、-=2?=,所以B選項正確;C、×=,所以C選項不正確;D、=÷=2÷=2,所以D選項不正確.故選B.【點睛】此題考查二次根式的混合運算,注意先化簡,再進一步利用計算公式和計算方法計算.5、A【解析】試題分析:根據角拋物線頂點式得到對稱軸為直線x=4,利用拋物線對稱性得到拋物線在1<x<2這段位于x軸的上方,而拋物線在2<x<3這段位于x軸的下方,于是可得拋物線過點(2,0)然后把(2,0)代入y=a(x-4)2-4(a≠0)可求出a=1.故選A6、D【解析】

根據頂點公式求得已知拋物線的頂點坐標,然后根據軸對稱的性質求得另一條拋物線的頂點,根據題意得出關于m的方程,解方程即可求得.【詳解】∵一條拋物線的函數(shù)表達式為y=x2+6x+m,∴這條拋物線的頂點為(-3,m-9),∴關于x軸對稱的拋物線的頂點(-3,9-m),∵它們的頂點相距10個單位長度.∴|m-9-(9-m)|=10,∴2m-18=±10,當2m-18=10時,m=1,當2m-18=-10時,m=4,∴m的值是4或1.故選D.【點睛】本題考查了二次函數(shù)圖象與幾何變換,解答本題的關鍵是掌握二次函數(shù)的頂點坐標公式,坐標和線段長度之間的轉換,關于x軸對稱的點和拋物線的關系.7、A【解析】

先根據勾股定理得到AB=,再根據扇形的面積公式計算出S扇形ABD,由旋轉的性質得到Rt△ADE≌Rt△ACB,于是S陰影部分=S△ADE+S扇形ABD-S△ABC=S扇形ABD.【詳解】∵∠ACB=90°,AC=BC=1,∴AB=,∴S扇形ABD=,又∵Rt△ABC繞A點逆時針旋轉30°后得到Rt△ADE,∴Rt△ADE≌Rt△ACB,∴S陰影部分=S△ADE+S扇形ABD?S△ABC=S扇形ABD=,故選A.【點睛】本題考查扇形面積計算,熟記扇形面積公式,采用作差法計算面積是解題的關鍵.8、C【解析】試題分析:根據二次根式的性質,被開方數(shù)大于或等于0,可以求出x的范圍.試題解析:根據題意得:1-x≥0,解得:x≤1.故選C.考點:函數(shù)自變量的取值范圍.9、B【解析】

根據題目中的數(shù)據可以用科學記數(shù)法表示出來,本題得以解決.【詳解】解:3.82億=3.82×108,故選B.【點睛】本題考查科學記數(shù)法-表示較大的數(shù),解答本題的關鍵是明確科學記數(shù)法的表示方法.10、A【解析】

連接AO并延長到E,連接BE.設AE=2R,則∠ABE=90°,∠AEB=∠ACB,∠ADC=90°,利用勾股定理求得AD=AC2-DC2=52-【詳解】解:如圖,連接AO并延長到E,連接BE.設AE=2R,則∠ABE=90°,∠AEB=∠ACB;∵AD⊥BC于D點,AC=5,DC=3,∴∠ADC=90°,∴AD=AC∴AB=在Rt△ABE與Rt△ADC中,∠ABE=∠ADC=90°,∠AEB=∠ACB,∴Rt△ABE∽Rt△ADC,∴ABAD即2R=AB?ACAD=4∴⊙O的直徑等于52故答案選:A.【點睛】本題主要考查了圓周角定理、勾股定理,解題的關鍵是掌握輔助線的作法.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】分析:按照二次根式的相關運算法則和性質進行計算即可.詳解:∵,∴.故答案為:.點睛:熟記二次根式的以下性質是解答本題的關鍵:(1);(2)=.12、﹣6增大【解析】

∵反比例函數(shù)的圖象經過點(﹣3,2),∴2=,即k=2×(﹣3)=﹣6,∴k<0,則y隨x的增大而增大.故答案為﹣6;增大.【點睛】本題考查用待定系數(shù)法求反函數(shù)解析式與反比例函數(shù)的性質:(1)當k>0時,函數(shù)圖象在一,三象限,在每個象限內,y隨x的增大而減?。唬?)當k<0時,函數(shù)圖象在二,四象限,在每個象限內,y隨x的增大而增大.13、【解析】∵點A(2,0),點B(0,1),∴OA=2,OB=1,.∵l⊥AB,∴∠PAC+OAB=90°.∵∠OBA+∠OAB=90°,∴∠OBA=∠PAC.∵∠AOB=∠ACP,∴△ABO∽△PAC,.設AC=m,PC=2m,.當點P在x軸的上方時,由得,,,,PC=1,,由得,,∴m=2,∴AC=2,PC=4,∴OC=2+2=4,∴P(4,4).當點P在x軸的下方時,由得,,,,PC=1,,由得,,∴m=2,∴AC=2,PC=4,∴OC=2-2=0,∴P(0,4).所以P點坐標為或(4,4)或或(0,4)【點睛】本題考察了相似三角形的判定,相似三角形的性質,平面直角坐標系點的坐標及分類討論的思想.在利用相似三角形的性質列比例式時,要找好對應邊,如果對應邊不確定,要分類討論.因點P在x軸上方和下方得到的結果也不一樣,所以要分兩種情況求解.請在此填寫本題解析!14、140°【解析】

如圖,連接BD,∵點E、F分別是邊AB、AD的中點,∴EF是△ABD的中位線,∴EF∥BD,BD=2EF=12,∴∠ADB=∠AFE=50°,∵BC=15,CD=9,BD=12,∴BC2=225,CD2=81,BD2=144,∴CD2+BD2=BC2,∴∠BDC=90°,∴∠ADC=∠ADB+∠BDC=50°+90°=140°.故答案為:140°.15、.【解析】

解:根據從C、D、E、F四個點中任意取一點,一共有4種可能,選取D、C、F時,所作三角形是等腰三角形,故P(所作三角形是等腰三角形)=;故答案為.【點睛】本題考查概率的計算及等腰三角形的判定,熟記等要三角形的性質及判定方法和概率的計算公式是本題的解題關鍵.16、.【解析】

分別求出從1到6的數(shù)中3的倍數(shù)的個數(shù),再根據概率公式解答即可.【詳解】有6張卡片,每張卡片上分別寫有不同的從1到6的一個自然數(shù),從中任意抽出一張卡片,共有6種結果,其中卡片上的數(shù)是3的倍數(shù)的有3和6兩種情況,所以從中任意抽出一張卡片,卡片上的數(shù)是3的倍數(shù)的概率是.故答案為【點睛】考查了概率公式,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.17、1.【解析】試題分析:如圖,當AB=AD時,滿足△PBC是等腰三角形的點P有且只有3個,△P1BC,△P2BC是等腰直角三角形,△P3BC是等腰直角三角形(P3B=P3C),則AB=AD=1,故答案為1.考點:矩形的性質;等腰三角形的性質;勾股定理;分類討論.三、解答題(共7小題,滿分69分)18、(1)10,補圖見解析;(2)眾數(shù)是5,中位數(shù)是1;(3)活動時間不少于1天的學生人數(shù)大約有5400人.【解析】

(1)用1減去其他天數(shù)所占的百分比即可得到a的值,用310°乘以它所占的百分比,即可求出該扇形所對圓心角的度數(shù);根據1天的人數(shù)和所占的百分比求出總人數(shù),再乘以8天的人數(shù)所占的百分比,即可補全統(tǒng)計圖;(2)根據眾數(shù)和中位數(shù)的定義即可求出答案;(3)用總人數(shù)乘以活動時間不少于1天的人數(shù)所占的百分比即可求出答案.【詳解】解:(1)扇形統(tǒng)計圖中a=1﹣5%﹣40%﹣20%﹣25%=10%,該扇形所對圓心角的度數(shù)為310°×10%=31°,參加社會實踐活動的天數(shù)為8天的人數(shù)是:×10%=10(人),補圖如下:故答案為10;(2)抽樣調查中總人數(shù)為100人,結合條形統(tǒng)計圖可得:眾數(shù)是5,中位數(shù)是1.(3)根據題意得:9000×(25%+10%+5%+20%)=5400(人),活動時間不少于1天的學生人數(shù)大約有5400人.【點睛】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據;扇形統(tǒng)計圖直接反映部分占總體的百分比大?。?9、(1)見解析;(2)2【解析】試題分析:(1)連接OB,證PB⊥OB.根據四邊形的內角和為360°,結合已知條件可得∠OBP=90°得證;(2)連接OP,根據切線長定理得直角三角形,根據含30度角的直角三角形的性質即可求得結果.(1)連接OB.∵OA=OB,∴∠OBA=∠BAC=30°.∴∠AOB=80°-30°-30°=20°.∵PA切⊙O于點A,∴OA⊥PA,∴∠OAP=90°.∵四邊形的內角和為360°,∴∠OBP=360°-90°-60°-20°=90°.∴OB⊥PB.又∵點B是⊙O上的一點,∴PB是⊙O的切線.(2)連接OP,∵PA、PB是⊙O的切線,∴PA=PB,∠OPA=∠OPB=,∠APB=30°.在Rt△OAP中,∠OAP=90°,∠OPA=30°,∴OP=2OA=2×2=1.∴PA=OP2-OA2=2∵PA=PB,∠APB=60°,∴PA=PB=AB=2.考點:此題考查了切線的判定、切線長定理、含30度角的直角三角形的性質點評:要證某線是圓的切線,已知此線過圓上某點,連接圓心與這點(即為半徑),再證垂直即可.20、(1)證明見解析;(2)能;BE=1或;(3)【解析】

(1)證明:∵AB=AC,∴∠B=∠C,∵△ABC≌△DEF,∴∠AEF=∠B,又∵∠AEF+∠CEM=∠AEC=∠B+∠BAE,∴∠CEM=∠BAE,∴△ABE∽△ECM;(2)能.∵∠AEF=∠B=∠C,且∠AME>∠C,∴∠AME>∠AEF,∴AE≠AM;當AE=EM時,則△ABE≌△ECM,∴CE=AB=5,∴BE=BC?EC=6?5=1,當AM=EM時,則∠MAE=∠MEA,∴∠MAE+∠BAE=∠MEA+∠CEM,即∠CAB=∠CEA,又∵∠C=∠C,∴△CAE∽△CBA,∴,∴CE=,∴BE=6?=;∴BE=1或;(3)解:設BE=x,又∵△ABE∽△ECM,∴,即:,∴CM=,∴AM=5?CM,∴當x=3時,AM最短為,又∵當BE=x=3=BC時,∴點E為BC的中點,∴AE⊥BC,∴AE=,此時,EF⊥AC,∴EM=,S△AEM=.21、潛艇C離開海平面的下潛深度約為308米【解析】試題分析:過點C作CD⊥AB,交BA的延長線于點D,則AD即為潛艇C的下潛深度,用銳角三角函數(shù)分別在Rt△ACD中表示出CD和在Rt△BCD中表示出BD,利用BD=AD+AB二者之間的關系列出方程求解.試題解析:過點C作CD⊥AB,交BA的延長線于點D,則AD即為潛艇C的下潛深度,根據題意得:∠ACD=30°,∠BCD=68°,設AD=x,則BD=BA+AD=1000+x,在Rt△ACD中,CD===在Rt△BCD中,BD=CD?tan68°,∴325+x=?tan68°解得:x≈100米,∴潛艇C離開海平面的下潛深度為100米.點睛:本題考查了解直角三角形的應用,解題的關鍵是作出輔助線,從題目中找出直角三角形并選擇合適的邊角關系求解.視頻22、(Ⅰ)25、40;(Ⅱ)平均數(shù)為68.2分,眾數(shù)為75分,中位數(shù)為75分.【解析】

(1)由直方圖可知A的總人數(shù)為5,再依據其所占比例20%可求解總人數(shù);由直方圖中B的人數(shù)為10及總人數(shù)可知m的值;(2)根據平均數(shù)、眾數(shù)和中位數(shù)的定義求解即可.【詳解】(Ⅰ)該教師調查的總人數(shù)為(2+3)÷20%=25(人),m%=×100%=40%,即m=40,故答案為:25、40;(Ⅱ)由條形圖知95分的有5人、75分的有10人、60分的有6人、30分的有4人,則樣本分知的平均數(shù)為(分),眾數(shù)為75分,中位數(shù)為第13個數(shù)據,即75分.【點睛】理解兩幅統(tǒng)計圖中各數(shù)據的含義及其對應關系是解題關鍵.23、證明見解析.【解析】

想證明BC=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論