2023-2024學年湖南省衡陽市雁峰區(qū)第八中學高三下學期3月模擬考試數(shù)學試題文試題_第1頁
2023-2024學年湖南省衡陽市雁峰區(qū)第八中學高三下學期3月模擬考試數(shù)學試題文試題_第2頁
2023-2024學年湖南省衡陽市雁峰區(qū)第八中學高三下學期3月模擬考試數(shù)學試題文試題_第3頁
2023-2024學年湖南省衡陽市雁峰區(qū)第八中學高三下學期3月模擬考試數(shù)學試題文試題_第4頁
2023-2024學年湖南省衡陽市雁峰區(qū)第八中學高三下學期3月模擬考試數(shù)學試題文試題_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年湖南省衡陽市雁峰區(qū)第八中學高三下學期3月模擬考試數(shù)學試題文試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù)在上有兩個零點,則的取值范圍是()A. B. C. D.2.射線測厚技術原理公式為,其中分別為射線穿過被測物前后的強度,是自然對數(shù)的底數(shù),為被測物厚度,為被測物的密度,是被測物對射線的吸收系數(shù).工業(yè)上通常用镅241()低能射線測量鋼板的厚度.若這種射線對鋼板的半價層厚度為0.8,鋼的密度為7.6,則這種射線的吸收系數(shù)為()(注:半價層厚度是指將已知射線強度減弱為一半的某種物質厚度,,結果精確到0.001)A.0.110 B.0.112 C. D.3.已知,,,則,,的大小關系為()A. B. C. D.4.已知函數(shù)滿足=1,則等于()A.- B. C.- D.5.盒中有6個小球,其中4個白球,2個黑球,從中任取個球,在取出的球中,黑球放回,白球則涂黑后放回,此時盒中黑球的個數(shù),則()A., B.,C., D.,6.數(shù)列{an}是等差數(shù)列,a1=1,公差d∈[1,2],且a4+λa10+a16=15,則實數(shù)λ的最大值為()A. B. C. D.7.盒中裝有形狀、大小完全相同的5張“刮刮卡”,其中只有2張“刮刮卡”有獎,現(xiàn)甲從盒中隨機取出2張,則至少有一張有獎的概率為()A. B. C. D.8.已知集合,,則A. B.C. D.9.已知雙曲線的一條漸近線為,圓與相切于點,若的面積為,則雙曲線的離心率為()A. B. C. D.10.設集合,,則集合A. B. C. D.11.已知集合,,,則()A. B. C. D.12.已知向量,,且與的夾角為,則x=()A.-2 B.2 C.1 D.-1二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線的焦點和橢圓的右焦點重合,直線過拋物線的焦點與拋物線交于、兩點和橢圓交于、兩點,為拋物線準線上一動點,滿足,,當面積最大時,直線的方程為______.14.設,滿足約束條件,則的最大值為______.15.的二項展開式中,含項的系數(shù)為__________.16.若方程有兩個不等實根,則實數(shù)的取值范圍是_____________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)求函數(shù)的零點;(2)設函數(shù)的圖象與函數(shù)的圖象交于,兩點,求證:;(3)若,且不等式對一切正實數(shù)x恒成立,求k的取值范圍.18.(12分)如圖,兩座建筑物AB,CD的底部都在同一個水平面上,且均與水平面垂直,它們的高度分別是10m和20m,從建筑物AB的頂部A看建筑物CD的視角∠CAD=60°.(1)求BC的長度;(2)在線段BC上取一點P(點P與點B,C不重合),從點P看這兩座建筑物的視角分別為∠APB=α,∠DPC=β,問點P在何處時,α+β最???19.(12分)設函數(shù)(其中),且函數(shù)在處的切線與直線平行.(1)求的值;(2)若函數(shù),求證:恒成立.20.(12分)如圖,在棱長為的正方形中,,分別為,邊上的中點,現(xiàn)以為折痕將點旋轉至點的位置,使得為直二面角.(1)證明:;(2)求與面所成角的正弦值.21.(12分)在△ABC中,角A,B,C的對邊分別為a,b,c,且b(a2+c2﹣b2)=a2ccosC+ac2cosA.(1)求角B的大??;(2)若△ABC外接圓的半徑為,求△ABC面積的最大值.22.(10分)已知函數(shù).(1)若函數(shù)的圖象與軸有且只有一個公共點,求實數(shù)的取值范圍;(2)若對任意成立,求實數(shù)的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】

對函數(shù)求導,對a分類討論,分別求得函數(shù)的單調性及極值,結合端點處的函數(shù)值進行判斷求解.【詳解】∵,.當時,,在上單調遞增,不合題意.當時,,在上單調遞減,也不合題意.當時,則時,,在上單調遞減,時,,在上單調遞增,又,所以在上有兩個零點,只需即可,解得.綜上,的取值范圍是.故選C.【點睛】本題考查了利用導數(shù)解決函數(shù)零點的問題,考查了函數(shù)的單調性及極值問題,屬于中檔題.2.C【解析】

根據(jù)題意知,,代入公式,求出即可.【詳解】由題意可得,因為,所以,即.所以這種射線的吸收系數(shù)為.故選:C【點睛】本題主要考查知識的遷移能力,把數(shù)學知識與物理知識相融合;重點考查指數(shù)型函數(shù),利用指數(shù)的相關性質來研究指數(shù)型函數(shù)的性質,以及解指數(shù)型方程;屬于中檔題.3.D【解析】

構造函數(shù),利用導數(shù)求得的單調區(qū)間,由此判斷出的大小關系.【詳解】依題意,得,,.令,所以.所以函數(shù)在上單調遞增,在上單調遞減.所以,且,即,所以.故選:D.【點睛】本小題主要考查利用導數(shù)求函數(shù)的單調區(qū)間,考查化歸與轉化的數(shù)學思想方法,考查對數(shù)式比較大小,屬于中檔題.4.C【解析】

設的最小正周期為,可得,則,再根據(jù)得,又,則可求出,進而可得.【詳解】解:設的最小正周期為,因為,所以,所以,所以,又,所以當時,,,因為,整理得,因為,,,則所以.故選:C.【點睛】本題考查三角形函數(shù)的周期性和對稱性,考查學生分析能力和計算能力,是一道難度較大的題目.5.C【解析】

根據(jù)古典概型概率計算公式,計算出概率并求得數(shù)學期望,由此判斷出正確選項.【詳解】表示取出的為一個白球,所以.表示取出一個黑球,,所以.表示取出兩個球,其中一黑一白,,表示取出兩個球為黑球,,表示取出兩個球為白球,,所以.所以,.故選:C【點睛】本小題主要考查離散型隨機變量分布列和數(shù)學期望的計算,屬于中檔題.6.D【解析】

利用等差數(shù)列通項公式推導出λ,由d∈[1,2],能求出實數(shù)λ取最大值.【詳解】∵數(shù)列{an}是等差數(shù)列,a1=1,公差d∈[1,2],且a4+λa10+a16=15,∴1+3d+λ(1+9d)+1+15d=15,解得λ,∵d∈[1,2],λ2是減函數(shù),∴d=1時,實數(shù)λ取最大值為λ.故選D.【點睛】本題考查實數(shù)值的最大值的求法,考查等差數(shù)列的性質等基礎知識,考查運算求解能力,是基礎題.7.C【解析】

先計算出總的基本事件的個數(shù),再計算出兩張都沒獲獎的個數(shù),根據(jù)古典概型的概率,求出兩張都沒有獎的概率,由對立事件的概率關系,即可求解.【詳解】從5張“刮刮卡”中隨機取出2張,共有種情況,2張均沒有獎的情況有(種),故所求概率為.故選:C.【點睛】本題考查古典概型的概率、對立事件的概率關系,意在考查數(shù)學建模、數(shù)學計算能力,屬于基礎題.8.D【解析】

因為,,所以,,故選D.9.D【解析】

由圓與相切可知,圓心到的距離為2,即.又,由此求出的值,利用離心率公式,求出e.【詳解】由題意得,,,.故選:D.【點睛】本題考查了雙曲線的幾何性質,直線與圓相切的性質,離心率的求法,屬于中檔題.10.B【解析】

先求出集合和它的補集,然后求得集合的解集,最后取它們的交集得出結果.【詳解】對于集合A,,解得或,故.對于集合B,,解得.故.故選B.【點睛】本小題主要考查一元二次不等式的解法,考查對數(shù)不等式的解法,考查集合的補集和交集的運算.對于有兩個根的一元二次不等式的解法是:先將二次項系數(shù)化為正數(shù),且不等號的另一邊化為,然后通過因式分解,求得對應的一元二次方程的兩個根,再利用“大于在兩邊,小于在中間”來求得一元二次不等式的解集.11.D【解析】

根據(jù)集合的基本運算即可求解.【詳解】解:,,,則故選:D.【點睛】本題主要考查集合的基本運算,屬于基礎題.12.B【解析】

由題意,代入解方程即可得解.【詳解】由題意,所以,且,解得.故選:B.【點睛】本題考查了利用向量的數(shù)量積求向量的夾角,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

根據(jù)均值不等式得到,,根據(jù)等號成立條件得到直線的傾斜角為,計算得到直線方程.【詳解】由橢圓,可知,,,,,,,(當且僅當,等號成立),,,,,直線的傾斜角為,直線的方程為.故答案為:.【點睛】本題考查了拋物線,橢圓,直線的綜合應用,意在考查學生的計算能力和綜合應用能力.14.29【解析】

由約束條件作出可行域,化目標函數(shù)為以原點為圓心的圓,數(shù)形結合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標,代入目標函數(shù)得答案.【詳解】由約束條件作出可行域如圖:聯(lián)立,解得,目標函數(shù)是以原點為圓心,以為半徑的圓,由圖可知,此圓經過點A時,半徑最大,此時也最大,最大值為.所以本題答案為29.【點睛】線性規(guī)劃問題,首先明確可行域對應的是封閉區(qū)域還是開放區(qū)域、分界線是實線還是虛線,其次確定目標函數(shù)的幾何意義,是求直線的截距、兩點間距離的平方、直線的斜率、還是點到直線的距離等等,最后結合圖形確定目標函數(shù)最值取法、值域范圍.15.【解析】

寫出二項展開式的通項,然后取的指數(shù)為求得的值,則項的系數(shù)可求得.【詳解】,由,可得.含項的系數(shù)為.故答案為:【點睛】本題考查了二項式定理展開式、需熟記二項式展開式的通項公式,屬于基礎題.16.【解析】

由知x>0,故.令,則.當時,;當時,.所以在(0,e)上遞增,在(e,+)上遞減.故,即.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)x=1(2)證明見解析(3)【解析】

(1)令,根據(jù)導函數(shù)確定函數(shù)的單調區(qū)間,求出極小值,進而求解;(2)轉化思想,要證,即證,即證,構造函數(shù)進而求證;(3)不等式對一切正實數(shù)恒成立,,設,分類討論進而求解.【詳解】解:(1)令,所以,當時,,在上單調遞增;當時,,在單調遞減;所以,所以的零點為.(2)由題意,,要證,即證,即證,令,則,由(1)知,當且僅當時等號成立,所以,即,所以原不等式成立.(3)不等式對一切正實數(shù)恒成立,,設,,記,△,①當△時,即時,恒成立,故單調遞增.于是當時,,又,故,當時,,又,故,又當時,,因此,當時,,②當△,即時,設的兩個不等實根分別為,,又,于是,故當時,,從而在單調遞減;當時,,此時,于是,即舍去,綜上,的取值范圍是.【點睛】(1)考查函數(shù)求導,根據(jù)導函數(shù)確定函數(shù)的單調性,零點;(2)考查轉化思想,構造函數(shù)求極值;(3)考查分類討論思想,函數(shù)的單調性,函數(shù)的求導;屬于難題.18.(1);(2)當BP為cm時,α+β取得最小值.【解析】

(1)作AE⊥CD,垂足為E,則CE=10,DE=10,設BC=x,根據(jù)得到,解得答案.(2)設BP=t,則,故,設,求導得到函數(shù)單調性,得到最值.【詳解】(1)作AE⊥CD,垂足為E,則CE=10,DE=10,設BC=x,則,化簡得,解之得,或(舍),(2)設BP=t,則,,設,,令f'(t)=0,因為,得,當時,f'(t)<0,f(t)是減函數(shù);當時,f'(t)>0,f(t)是增函數(shù),所以,當時,f(t)取得最小值,即tan(α+β)取得最小值,因為恒成立,所以f(t)<0,所以tan(α+β)<0,,因為y=tanx在上是增函數(shù),所以當時,α+β取得最小值.【點睛】本題考查了三角恒等變換,利用導數(shù)求最值,意在考查學生的計算能力和應用能力.19.(1)(2)證明見解析【解析】

(1)求導得到,解得答案.(2)變形得到,令函數(shù),求導得到函數(shù)單調區(qū)間得到,,得到證明.【詳解】(1),,解得.(2)得,變形得,令函數(shù),,令解得,當時,時.函數(shù)在上單調遞增,在上單調遞減,,而函數(shù)在區(qū)間上單調遞增,,,即,即,恒成立.【點睛】本題考查了根據(jù)切線求參數(shù),證明不等式,意在考查學生的計算能力和轉化能力,綜合應用能力.20.(1)證明見詳解;(2)【解析】

(1)在折疊前的正方形ABCD中,作出對角線AC,BD,由正方形性質知,又//,則于點H,則由直二面角可知面,故.又,則面,故命題得證;(2)作出線面角,在直角三角形中求解該角的正弦值.【詳解】解:(1)證明:在正方形中,連結交于.因為//,故可得,即又旋轉不改變上述垂直關系,且平面,面,又面,所以(2)因為為直二面角,故平面平面,又其交線為,且平面,故可得底面,連結,則即為與面所成角,連結交于,在中,,在中,.所以與面所成角的正弦值為.【點睛】本題考查了線面垂直的證明與性質,利用定義求線面角,屬于中檔題.21.(1)B(2)【解析】

(1)由已知結合余弦定理,正弦定理及和兩角和的正弦公式進行化簡可求cosB,進而可求B;(2)由已知結合正弦定理,余弦定理及基本不等式即可求解ac的范圍,然后結合三角形的面積公式即可求解.【詳解】(1)因為b(a2+c2﹣b2)=ca2cosC+ac2cosA,∴,即2bcosB=acosC+ccosA由正弦定理可得,2sinBcosB=sinAcosC+sinCcosA=sin

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論