版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
四川省金堂中學(xué)2025屆高一數(shù)學(xué)第一學(xué)期期末預(yù)測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.某校早上6:30開始跑操,假設(shè)該校學(xué)生小張與小王在早上6:00~6:30之間到校,且每人在該時間段的任何時刻到校是等可能的,則小張與小王至少相差5分鐘到校的概率為()A. B.C. D.2.已知函數(shù),若不等式對任意實數(shù)x恒成立,則a的取值范圍為()A. B.C. D.3.下列關(guān)系中正確個數(shù)是()①②③④A.1 B.2C.3 D.44.已知全集,集合則下圖中陰影部分所表示的集合為()A. B.C. D.5.若,則的值是()A. B.C. D.16.已知集合A={x|<2},B={x|log2x>0},則()A. B.A∩B=C.或 D.7.設(shè),則的值為()A.0 B.1C.2 D.38.函數(shù)的值域是A. B.C. D.9.設(shè)函數(shù),則下列說法錯誤的是()A.當(dāng)時,的值域為B.的單調(diào)遞減區(qū)間為C.當(dāng)時,函數(shù)有個零點D.當(dāng)時,關(guān)于的方程有個實數(shù)解10.函數(shù)的值域為()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知水平放置的按“斜二測畫法”得到如圖所示的直觀圖,其中,,則原的面積為___________12.公元前6世紀(jì),古希臘的畢達哥拉斯學(xué)派通過研究正五邊形和正十邊形的作圖,發(fā)現(xiàn)了黃金分割值約為0.618,這一數(shù)值也可以表示為.若,則_________.13.已知集合,若,則________.14.已知,是相互獨立事件,且,,則______15.已知則_______.16.已知圓心角為2rad的扇形的周長為12,則該扇形的面積為____________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知角α的頂點與原點O重合,始邊與x軸的非負(fù)半軸重合,它的終邊過點P()(Ⅰ)求sin(α+π)的值;(Ⅱ)若角β滿足sin(α+β)=,求cosβ的值18.脫貧是政府關(guān)注民生的重要任務(wù),了解居民的實際收入狀況就顯得尤為重要.現(xiàn)從某地區(qū)隨機抽取個農(nóng)戶,考察每個農(nóng)戶的年收入與年積蓄的情況進行分析,設(shè)第個農(nóng)戶的年收入(萬元),年積蓄(萬元),經(jīng)過數(shù)據(jù)處理得(Ⅰ)已知家庭的年結(jié)余對年收入具有線性相關(guān)關(guān)系,求線性回歸方程;(Ⅱ)若該地區(qū)的農(nóng)戶年積蓄在萬以上,即稱該農(nóng)戶已達小康生活,請預(yù)測農(nóng)戶達到小康生活的最低年收入應(yīng)為多少萬元?附:在中,其中為樣本平均值.19.已知,函數(shù).(Ⅰ)當(dāng)時,解不等式;(Ⅱ)若關(guān)于的方程的解集中恰有一個元素,求的取值范圍;(Ⅲ)設(shè),若對任意,函數(shù)在區(qū)間上的最大值與最小值的和不大于,求的取值范圍.20.袋子里有6個大小、質(zhì)地完全相同且?guī)в胁煌幪柕男∏颍渲杏?個紅球,2個白球,3個黑球,從中任取2個球.(1)寫出樣本空間;(2)求取出兩球顏色不同的概率;(3)求取出兩個球中至多一個黑球的概率.21.已知函數(shù)f(x)=為奇函數(shù)(1)求a的值;(2)判斷函數(shù)f(x)的單調(diào)性,并加以證明
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】設(shè)小張與小王的到校時間分別為6:00后第分鐘,第分鐘,由題意可畫出圖形,利用幾何概型中面積比即可求解.【詳解】設(shè)小張與小王的到校時間分別為6:00后第分鐘,第分鐘,可以看成平面中的點試驗的全部結(jié)果所構(gòu)成的區(qū)域為是一個正方形區(qū)域,對應(yīng)的面積,則小張與小王至少相差5分鐘到校事件(如陰影部分)則符合題意的區(qū)域,由幾何概型可知小張與小王至少相差5分鐘到校的概率為.故選:A【點睛】本題考查了幾何概率模型,解題的關(guān)鍵是畫出滿足條件的區(qū)域,屬于基礎(chǔ)題.2、C【解析】先分析出的奇偶性,再得出的單調(diào)性,由單調(diào)性結(jié)合奇偶性解不等式得到,再利用均值不等式可得答案.【詳解】的定義域滿足,由,所以在上恒成立.所以的定義域為則所以,即為奇函數(shù).設(shè),由上可知為奇函數(shù).當(dāng)時,,均為增函數(shù),則在上為增函數(shù).所以在上為增函數(shù).又為奇函數(shù),則在上為增函數(shù),且所以在上為增函數(shù).所以在上為增函數(shù).由,即所以對任意實數(shù)x恒成立即,由當(dāng)且僅當(dāng),即時得到等號.所以故選:C3、A【解析】根據(jù)集合的概念、數(shù)集的表示判斷【詳解】是有理數(shù),是實數(shù),不是正整數(shù),是無理數(shù),當(dāng)然不是整數(shù).只有①正確故選:A【點睛】本題考查元素與集合的關(guān)系,掌握常用數(shù)集的表示是解題關(guān)鍵4、C【解析】根據(jù)題意,結(jié)合Venn圖與集合間的基本運算,即可求解.【詳解】根據(jù)題意,易知圖中陰影部分所表示.故選:C.5、D【解析】由求出a、b,表示出,進而求出的值.詳解】由,.故選:D6、A【解析】先分別求出集合A和B,再利用交集定義和并集定義能求出結(jié)果【詳解】由2-x<2得x>-1,所以A={x|x>-1};由log2x>0得x>1,所以B={x|x>1}.所以A∩B={x|x>1}.故選A【點睛】本題考查交集、并集的求法及應(yīng)用,考查指數(shù)對數(shù)不等式的解法,是基礎(chǔ)題7、C【解析】根據(jù)分段函數(shù),結(jié)合指數(shù),對數(shù)運算計算即可得答案.【詳解】解:由于,所以.故選:C.【點睛】本題考查對數(shù)運算,指數(shù)運算,分段函數(shù)求函數(shù)值,考查運算能力,是基礎(chǔ)題.8、C【解析】函數(shù)中,因為所以.有.故選C.9、C【解析】利用二次函數(shù)和指數(shù)函數(shù)的值域可判斷A選項;利用二次函數(shù)和指數(shù)函數(shù)的單調(diào)性可判斷B選項;利用函數(shù)的零點個數(shù)求出的取值范圍,可判斷C選項;解方程可判斷D選項.【詳解】選項A:當(dāng)時,當(dāng)時,,當(dāng)時,,當(dāng)時,,綜上,函數(shù)的值域為,故A正確;選項B:當(dāng)時,的單調(diào)遞減區(qū)間為,當(dāng)時,函數(shù)為單調(diào)遞增函數(shù),無單調(diào)減區(qū)間,所以函數(shù)的單調(diào)遞減為,故B正確;選項C:當(dāng)時,令,解得或(舍去),當(dāng)時,要使有解,即在上有解,只需求出的值域即可,當(dāng)時,,且函數(shù)在上單調(diào)遞減,所以此時的范圍為,故C錯誤;選項D:當(dāng)時,,即,即,解得或,當(dāng),時,,則,即,解得,所以當(dāng)時,關(guān)于的方程有個實數(shù)解,故D正確.故選:C.10、C【解析】由二倍角公式化簡,設(shè),利用復(fù)合函數(shù)求值域.【詳解】函數(shù),設(shè),,則,由二次函數(shù)的圖像及性質(zhì)可知,所以的值域為,故選:C.二、填空題:本大題共6小題,每小題5分,共30分。11、2【解析】∵∠B'A'C'=90°,B'O'=C'O'=1,.∴A'O'=1,∴原△ABC的高為2,△ABC面積為.點睛:由斜二測畫法知,設(shè)直觀圖的面積為,原圖形面積為,則12、【解析】利用同角的基本關(guān)系式,可得,代入所求,結(jié)合輔助角公式,即可求解【詳解】因為,,所以,所以,故答案為【點睛】本題考查同角三角函數(shù)的基本關(guān)系式,輔助角公式,考查計算化簡的能力,屬基礎(chǔ)題13、0【解析】若兩個集合相等,則兩個集合中的元素完全相同.,又,故答案為0.點睛:利用元素的性質(zhì)求參數(shù)的方法(1)確定性的運用:利用集合中元素的確定性解出參數(shù)的所有可能值;(2)互異性的運用:根據(jù)集合中元素的互異性對集合中元素進行檢驗.14、【解析】由相互獨立事件的性質(zhì)和定義求解即可【詳解】因為,是相互獨立事件,所以,也是相互獨立事件,因為,,所以,故答案為:15、【解析】因為,所以16、9【解析】根據(jù)題意條件,先設(shè)出扇形的半徑和弧長,并找到弧長與半徑之間的關(guān)系,通過已知的扇形周長,可以求解出扇形的半徑和弧長,然后再利用完成求解.【詳解】設(shè)扇形的半徑為,弧長為,由已知得,圓心角,則,因為扇形的周長為12,所以,所以,,則.故答案為:9.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ)或.【解析】分析:(Ⅰ)先根據(jù)三角函數(shù)定義得,再根據(jù)誘導(dǎo)公式得結(jié)果,(Ⅱ)先根據(jù)三角函數(shù)定義得,再根據(jù)同角三角函數(shù)關(guān)系得,最后根據(jù),利用兩角差的余弦公式求結(jié)果.【詳解】詳解:(Ⅰ)由角的終邊過點得,所以.(Ⅱ)由角的終邊過點得,由得.由得,所以或.點睛:三角函數(shù)求值的兩種類型(1)給角求值:關(guān)鍵是正確選用公式,以便把非特殊角的三角函數(shù)轉(zhuǎn)化為特殊角的三角函數(shù).(2)給值求值:關(guān)鍵是找出已知式與待求式之間的聯(lián)系及函數(shù)的差異.①一般可以適當(dāng)變換已知式,求得另外函數(shù)式的值,以備應(yīng)用;②變換待求式,便于將已知式求得的函數(shù)值代入,從而達到解題的目的.18、(Ⅰ);(Ⅱ)萬元.【解析】(Ⅰ)利用題中所給數(shù)據(jù)和最小二乘法求出相關(guān)系數(shù),進而求出線性回歸方程;(Ⅱ)利用線性回歸方程進行預(yù)測.試題解析:(Ⅰ)由題意知所以線性回歸方程為(Ⅱ)令得由此可預(yù)測該農(nóng)戶的年收入最低為萬元.19、(Ⅰ);(Ⅱ);(Ⅲ).【解析】(Ⅰ)當(dāng)時,利用對數(shù)函數(shù)的單調(diào)性,直接解不等式即可;(Ⅱ)化簡關(guān)于的方程,通過分離變量推出的表達式,通過解集中恰有一個元素,利用二次函數(shù)的性質(zhì),即可求的取值范圍;(Ⅲ)在上單調(diào)遞減利用復(fù)合函數(shù)的單調(diào)性求解函數(shù)的最值,令,化簡不等式,轉(zhuǎn)化求解不等式的最大值,然后推出的范圍.【詳解】(Ⅰ)當(dāng)時,,∴,整理得,解得.所以原不等式的解集為.(Ⅱ)方程,即為,∴,∴,令,則,由題意得方程在上只有一解,令,,轉(zhuǎn)化為函數(shù)與的圖象在上只有一個交點.則分別作出函數(shù)與的圖象,如圖所示結(jié)合圖象可得,當(dāng)或時,直線y=a和的圖象只有一個公共點,即方程只有一個解所以實數(shù)范圍為.(Ⅲ)因為函數(shù)在上單調(diào)遞減,所以函數(shù)定義域內(nèi)單調(diào)遞減,所以函數(shù)在區(qū)間上的最大值為,最小值為,所以由題意得,所以恒成立,令,所以恒成立,因為在上單調(diào)遞增,所以∴,解得,又,∴所以實數(shù)的取值范圍是.【點睛】解答此類題時注意以下幾點:(1)對于復(fù)合函數(shù)的單調(diào)性,可根據(jù)“同增異減”的方法進行判斷;(2)已知方程根的個數(shù)(函數(shù)零點的個數(shù))求參數(shù)范圍時,可通過解方程的方法求解,對于無法解方程的,可通過分離、構(gòu)造函數(shù)的方法轉(zhuǎn)化為函數(shù)圖象公共點個數(shù)的問題處理(3)解不等式的恒成立問題時,通常采取分離參數(shù)的方法,將問題轉(zhuǎn)化為求函數(shù)的最值的問題20、(1)答案見解析;(2);(3).【解析】(1)將1個紅球記為個白球記為個黑球記為,進而列舉出所有可能性,進而得到樣本空間;(2)由題意,有1紅1白,1紅1黑,1白1黑,共三大類情況,由(1),列舉出所有可能性,進而求出概率;(3)由題意,有1紅1白,1紅1黑,1白1黑,2白,共四大類情況,由(1),列舉出所有可能性,進而求出概率【小問1詳解】將1個紅球記為個白球記為個黑球記為,則樣本空間,共15個樣本點.【小問2詳解】記A事件為“取出兩球顏色不同”,則兩球顏色可能是1紅1白,1紅1黑,1白1黑,則包含11個樣本點,所以.【小問3詳解】記事件為“取出兩個球至多有一個黑球”,則兩球顏色可能是1紅1白,1紅1黑,1白1黑,2白,則包含12個樣本點,所以.21、(1)a=-1;(2)函數(shù)f(x)在定義域R上單調(diào)遞增,詳見解析【解析】(1)根據(jù)定義域為R的奇函數(shù)滿足f(0)=0即可求得結(jié)果;(2)由定義法知,當(dāng)x1<x2時,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 單位管理制度收錄大全【員工管理】
- 港口生產(chǎn)組織與管理課件-港口企業(yè)的生產(chǎn)運作
- 消防整改項目可行性研究報告兩
- 銅鋁合金制品項目可行性研究報告
- 生活中的經(jīng)濟學(xué)課件
- 2025年瓦楞紙生項目可行性研究報告
- 氧氣瓶項目安全風(fēng)險評價報告
- 2025年中國公共云存儲服務(wù)行業(yè)發(fā)展前景預(yù)測及投資戰(zhàn)略研究報告
- 設(shè)備拍賣風(fēng)險評估報告范本
- 珊瑚絨印花被行業(yè)行業(yè)發(fā)展趨勢及投資戰(zhàn)略研究分析報告
- YY/T 0003-1990病床
- YC/T 207-2014煙用紙張中溶劑殘留的測定頂空-氣相色譜/質(zhì)譜聯(lián)用法
- GB/T 3906-20203.6 kV~40.5 kV交流金屬封閉開關(guān)設(shè)備和控制設(shè)備
- GB/T 18490.1-2017機械安全激光加工機第1部分:通用安全要求
- GB/T 16895.32-2008建筑物電氣裝置第7-712部分:特殊裝置或場所的要求太陽能光伏(PV)電源供電系統(tǒng)
- 部編人教版八年級語文下冊第11課《核舟記》精美課件
- 2022年鹽城市大數(shù)據(jù)集團有限公司招聘筆試試題及答案解析
- 2023年鄭州大學(xué)第一附屬醫(yī)院醫(yī)護人員招聘筆試題庫及答案解析
- 不同用地性質(zhì)交通吸發(fā)率
- 氣壓治療儀的使用方法課件
- 血液系統(tǒng)疾病概述(血液科)
評論
0/150
提交評論