




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
江蘇省宿遷市沭陽縣修遠(yuǎn)中學(xué)2025屆高三數(shù)學(xué)第一學(xué)期期末調(diào)研試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知復(fù)數(shù)z,則復(fù)數(shù)z的虛部為()A. B. C.i D.i2.已知為坐標(biāo)原點,角的終邊經(jīng)過點且,則()A. B. C. D.3.若,則的值為()A. B. C. D.4.設(shè)復(fù)數(shù)滿足,則在復(fù)平面內(nèi)的對應(yīng)點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.復(fù)數(shù)的()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.已知函數(shù)滿足,當(dāng)時,,則()A.或 B.或C.或 D.或7.已知復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點的坐標(biāo)為,則下列結(jié)論正確的是()A. B.復(fù)數(shù)的共軛復(fù)數(shù)是C. D.8.已知復(fù)數(shù)滿足(其中為的共軛復(fù)數(shù)),則的值為()A.1 B.2 C. D.9.若均為任意實數(shù),且,則的最小值為()A. B. C. D.10.已知圓:,圓:,點、分別是圓、圓上的動點,為軸上的動點,則的最大值是()A. B.9 C.7 D.11.已知雙曲線:(,)的右焦點與圓:的圓心重合,且圓被雙曲線的一條漸近線截得的弦長為,則雙曲線的離心率為()A.2 B. C. D.312.函數(shù)的圖象向右平移個單位得到函數(shù)的圖象,并且函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,則實數(shù)的值為()A. B. C.2 D.二、填空題:本題共4小題,每小題5分,共20分。13.已知平面向量,的夾角為,且,則=____14.已知數(shù)列的前項和為,,則滿足的正整數(shù)的值為______.15.已知復(fù)數(shù)z是純虛數(shù),則實數(shù)a=_____,|z|=_____.16.某高校開展安全教育活動,安排6名老師到4個班進行講解,要求1班和2班各安排一名老師,其余兩個班各安排兩名老師,其中劉老師和王老師不在一起,則不同的安排方案有________種.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知是拋物線的焦點,點在軸上,為坐標(biāo)原點,且滿足,經(jīng)過點且垂直于軸的直線與拋物線交于、兩點,且.(1)求拋物線的方程;(2)直線與拋物線交于、兩點,若,求點到直線的最大距離.18.(12分)選修4-4:坐標(biāo)系與參數(shù)方程:在平面直角坐標(biāo)系中,曲線:(為參數(shù)),在以平面直角坐標(biāo)系的原點為極點、軸的正半軸為極軸,且與平面直角坐標(biāo)系取相同單位長度的極坐標(biāo)系中,曲線:.(1)求曲線的普通方程以及曲線的平面直角坐標(biāo)方程;(2)若曲線上恰好存在三個不同的點到曲線的距離相等,求這三個點的極坐標(biāo).19.(12分)已知函數(shù).(1)討論的零點個數(shù);(2)證明:當(dāng)時,.20.(12分)已知函數(shù).(1)若曲線在處的切線為,試求實數(shù),的值;(2)當(dāng)時,若有兩個極值點,,且,,若不等式恒成立,試求實數(shù)m的取值范圍.21.(12分)求下列函數(shù)的導(dǎo)數(shù):(1)(2)22.(10分)如圖,在直三棱柱中,,,為的中點,點在線段上,且平面.(1)求證:;(2)求平面與平面所成二面角的正弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
利用復(fù)數(shù)的運算法則、虛部的定義即可得出【詳解】,則復(fù)數(shù)z的虛部為.故選:B.【點睛】本題考查了復(fù)數(shù)的運算法則、虛部的定義,考查了推理能力與計算能力,屬于基礎(chǔ)題.2、C【解析】
根據(jù)三角函數(shù)的定義,即可求出,得出,得出和,再利用二倍角的正弦公式,即可求出結(jié)果.【詳解】根據(jù)題意,,解得,所以,所以,所以.故選:C.【點睛】本題考查三角函數(shù)定義的應(yīng)用和二倍角的正弦公式,考查計算能力.3、C【解析】
根據(jù),再根據(jù)二項式的通項公式進行求解即可.【詳解】因為,所以二項式的展開式的通項公式為:,令,所以,因此有.故選:C【點睛】本題考查了二項式定理的應(yīng)用,考查了二項式展開式通項公式的應(yīng)用,考查了數(shù)學(xué)運算能力4、C【解析】
化簡得到,得到答案.【詳解】,故,對應(yīng)點在第三象限.故選:.【點睛】本題考查了復(fù)數(shù)的化簡和對應(yīng)象限,意在考查學(xué)生的計算能力.5、C【解析】所對應(yīng)的點為(-1,-2)位于第三象限.【考點定位】本題只考查了復(fù)平面的概念,屬于簡單題.6、C【解析】
簡單判斷可知函數(shù)關(guān)于對稱,然后根據(jù)函數(shù)的單調(diào)性,并計算,結(jié)合對稱性,可得結(jié)果.【詳解】由,可知函數(shù)關(guān)于對稱當(dāng)時,,可知在單調(diào)遞增則又函數(shù)關(guān)于對稱,所以且在單調(diào)遞減,所以或,故或所以或故選:C【點睛】本題考查函數(shù)的對稱性以及單調(diào)性求解不等式,抽象函數(shù)給出式子的意義,比如:,,考驗分析能力,屬中檔題.7、D【解析】
首先求得,然后根據(jù)復(fù)數(shù)乘法運算、共軛復(fù)數(shù)、復(fù)數(shù)的模、復(fù)數(shù)除法運算對選項逐一分析,由此確定正確選項.【詳解】由題意知復(fù)數(shù),則,所以A選項不正確;復(fù)數(shù)的共軛復(fù)數(shù)是,所以B選項不正確;,所以C選項不正確;,所以D選項正確.故選:D【點睛】本小題考查復(fù)數(shù)的幾何意義,共軛復(fù)數(shù),復(fù)數(shù)的模,復(fù)數(shù)的乘法和除法運算等基礎(chǔ)知識;考查運算求解能力,推理論證能力,數(shù)形結(jié)合思想.8、D【解析】
按照復(fù)數(shù)的運算法則先求出,再寫出,進而求出.【詳解】,,.故選:D【點睛】本題考查復(fù)數(shù)的四則運算、共軛復(fù)數(shù)及復(fù)數(shù)的模,考查基本運算能力,屬于基礎(chǔ)題.9、D【解析】
該題可以看做是圓上的動點到曲線上的動點的距離的平方的最小值問題,可以轉(zhuǎn)化為圓心到曲線上的動點的距離減去半徑的平方的最值問題,結(jié)合圖形,可以斷定那個點應(yīng)該滿足與圓心的連線與曲線在該點的切線垂直的問題來解決,從而求得切點坐標(biāo),即滿足條件的點,代入求得結(jié)果.【詳解】由題意可得,其結(jié)果應(yīng)為曲線上的點與以為圓心,以為半徑的圓上的點的距離的平方的最小值,可以求曲線上的點與圓心的距離的最小值,在曲線上取一點,曲線有在點M處的切線的斜率為,從而有,即,整理得,解得,所以點滿足條件,其到圓心的距離為,故其結(jié)果為,故選D.【點睛】本題考查函數(shù)在一點處切線斜率的應(yīng)用,考查圓的程,兩條直線垂直的斜率關(guān)系,屬中檔題.10、B【解析】試題分析:圓的圓心,半徑為,圓的圓心,半徑是.要使最大,需最大,且最小,最大值為的最小值為,故最大值是;關(guān)于軸的對稱點,,故的最大值為,故選B.考點:圓與圓的位置關(guān)系及其判定.【思路點睛】先根據(jù)兩圓的方程求出圓心和半徑,要使最大,需最大,且最小,最大值為的最小值為,故最大值是,再利用對稱性,求出所求式子的最大值.11、A【解析】
由已知,圓心M到漸近線的距離為,可得,又,解方程即可.【詳解】由已知,,漸近線方程為,因為圓被雙曲線的一條漸近線截得的弦長為,所以圓心M到漸近線的距離為,故,所以離心率為.故選:A.【點睛】本題考查雙曲線離心率的問題,涉及到直線與圓的位置關(guān)系,考查學(xué)生的運算能力,是一道容易題.12、C【解析】由函數(shù)的圖象向右平移個單位得到,函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,可得時,取得最大值,即,,,當(dāng)時,解得,故選C.點睛:本題主要考查了三角函數(shù)圖象的平移變換和性質(zhì)的靈活運用,屬于基礎(chǔ)題;據(jù)平移變換“左加右減,上加下減”的規(guī)律求解出,根據(jù)函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減可得時,取得最大值,求解可得實數(shù)的值.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】
根據(jù)平面向量模的定義先由坐標(biāo)求得,再根據(jù)平面向量數(shù)量積定義求得;將化簡并代入即可求得.【詳解】,則,平面向量,的夾角為,則由平面向量數(shù)量積定義可得,根據(jù)平面向量模的求法可知,代入可得,解得,故答案為:1.【點睛】本題考查了平面向量模的求法及簡單應(yīng)用,平面向量數(shù)量積的定義及運算,屬于基礎(chǔ)題.14、6【解析】
已知,利用,求出通項,然后即可求解【詳解】∵,∴當(dāng)時,,∴;當(dāng)時,,∴,故數(shù)列是首項為-2,公比為2的等比數(shù)列,∴.又,∴,∴,∴.【點睛】本題考查通項求解問題,屬于基礎(chǔ)題15、11【解析】
根據(jù)復(fù)數(shù)運算法則計算復(fù)數(shù)z,根據(jù)復(fù)數(shù)的概念和模長公式計算得解.【詳解】復(fù)數(shù)z,∵復(fù)數(shù)z是純虛數(shù),∴,解得a=1,∴z=i,∴|z|=1,故答案為:1,1.【點睛】此題考查復(fù)數(shù)的概念和模長計算,根據(jù)復(fù)數(shù)是純虛數(shù)建立方程求解,計算模長,關(guān)鍵在于熟練掌握復(fù)數(shù)的運算法則.16、156【解析】
先考慮每班安排的老師人數(shù),然后計算出對應(yīng)的方案數(shù),再考慮劉老師和王老師在同一班級的方案數(shù),兩者作差即可得到不同安排的方案數(shù).【詳解】安排6名老師到4個班則每班老師人數(shù)為1,1,2,2,共有種,劉老師和王老師分配到一個班,共有種,所以種.故答案為:.【點睛】本題考查排列組合的綜合應(yīng)用,難度一般.對于分組的問題,首先確定每組的數(shù)量,對于其中特殊元素,可通過“正難則反”的思想進行分析.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)求得點的坐標(biāo),可得出直線的方程,與拋物線的方程聯(lián)立,結(jié)合求出正實數(shù)的值,進而可得出拋物線的方程;(2)設(shè)點,,設(shè)的方程為,將直線的方程與拋物線的方程聯(lián)立,列出韋達定理,結(jié)合求得的值,可得出直線所過定點的坐標(biāo),由此可得出點到直線的最大距離.【詳解】(1)易知點,又,所以點,則直線的方程為.聯(lián)立,解得或,所以.故拋物線的方程為;(2)設(shè)的方程為,聯(lián)立有,設(shè)點,,則,所以.所以,解得.所以直線的方程為,恒過點.又點,故當(dāng)直線與軸垂直時,點到直線的最大距離為.【點睛】本題考查拋物線方程的求解,同時也考查了拋物線中最值問題的求解,涉及韋達定理設(shè)而不求法的應(yīng)用,考查運算求解能力,屬于中等題.18、(1),;(2),,.【解析】
(1)把曲線的參數(shù)方程與曲線的極坐標(biāo)方程分別轉(zhuǎn)化為直角坐標(biāo)方程;(2)利用圖象求出三個點的極徑與極角.【詳解】解:(1)由消去參數(shù)得,即曲線的普通方程為,又由得即為,即曲線的平面直角坐標(biāo)方程為(2)∵圓心到曲線:的距離,如圖所示,所以直線與圓的切點以及直線與圓的兩個交點,即為所求.∵,則,直線的傾斜角為,即點的極角為,所以點的極角為,點的極角為,所以三個點的極坐標(biāo)為,,.【點睛】本題考查圓的參數(shù)方程和普通方程的轉(zhuǎn)化、直線極坐標(biāo)方程和直角坐標(biāo)方程的轉(zhuǎn)化,消去參數(shù)方程中的參數(shù),就可把參數(shù)方程化為普通方程,消去參數(shù)的常用方法有:①代入消元法;②加減消元法;③乘除消元法;④三角恒等式消元法,極坐標(biāo)方程化為直角坐標(biāo)方程,只要將和換成和即可.19、(1)見解析(2)見解析【解析】
(1)求出,分別以當(dāng),,時,結(jié)合函數(shù)的單調(diào)性和最值判斷零點的個數(shù).(2)令,結(jié)合導(dǎo)數(shù)求出;同理可求出滿足,從而可得,進而證明.【詳解】解析:(1),,當(dāng)時,,單調(diào)遞減,,,此時有1個零點;當(dāng)時,無零點;當(dāng)時,由得,由得,∴在單調(diào)遞減,在單調(diào)遞增,∴在處取得最小值,若,則,此時沒有零點;若,則,此時有1個零點;若,則,,求導(dǎo)易得,此時在,上各有1個零點.綜上可得時,沒有零點,或時,有1個零點,時,有2個零點.(2)令,則,當(dāng)時,;當(dāng)時,,∴.令,則,當(dāng)時,,當(dāng)時,,∴,∴,,∴,即.【點睛】本題考查了導(dǎo)數(shù)判斷函數(shù)零點問題,考查了運用導(dǎo)數(shù)證明不等式問題,考查了分類的數(shù)學(xué)思想.本題的難點在于第二問不等式的證明中,合理設(shè)出函數(shù),通過比較最值證明.20、(1);(2).【解析】
(1)根據(jù)題意,求得的值,根據(jù)切點在切線上以及斜率等于,構(gòu)造方程組求得的值;(2)函數(shù)有兩個極值點,等價于方程的兩個正根,,不等式恒成立,等價于恒成立,,令,求出導(dǎo)數(shù),判斷單調(diào)性,即可得到的范圍,即的范圍.【詳解】(1)由題可知,,,聯(lián)立可得.(2)當(dāng)時,,,有兩個極值點,,且,,是方程的兩個正根,,,不等式恒成立,即恒成立,,由,,得,,令,,在上是減函數(shù),,故.【點睛】該題考查的是有關(guān)導(dǎo)數(shù)的問題,涉及到的知識點有導(dǎo)數(shù)的幾何意義,函數(shù)的極值點的個數(shù),構(gòu)造新函數(shù),應(yīng)用導(dǎo)數(shù)研究函數(shù)的值域得到參數(shù)的取值范圍,屬于較難題目.21、(1);(2).【解析】
(1)根據(jù)復(fù)合函數(shù)的求導(dǎo)法則可得結(jié)果.(2)同樣根據(jù)復(fù)合函數(shù)的求導(dǎo)法則可得結(jié)果.【詳解】(1)令,,則,而,,故.(2)令,,則,而,,故,化簡得到.【點睛】本題考查復(fù)合函數(shù)的導(dǎo)數(shù),此類問題一般是先把函數(shù)分解為簡單函數(shù)的復(fù)合,再根據(jù)復(fù)合函數(shù)的求導(dǎo)法則
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 安裝分包施工合同
- 綠色環(huán)保建筑工地安全管理制度
- 《自然環(huán)境保護:高中生物地理教學(xué)教案》
- 委托活動代理服務(wù)協(xié)議書
- 重要會議紀(jì)要的編制要點與范例
- 船舶修理維護合同7篇
- 摩托車轉(zhuǎn)讓協(xié)議合同與摩托車過戶轉(zhuǎn)讓協(xié)議6篇
- 第三方供餐合同8篇
- 2025年銀川貨運從業(yè)資格證考試模擬題及答案
- 2023年新高考全國乙卷語文真題(原卷版)
- 上海青浦夏雨幼兒園案例分析課件
- 新一代寄遞平臺投遞PC(10月)課件
- 常州市新課結(jié)束考試九年級數(shù)學(xué)試卷
- 2021年學(xué)校中考報名工作方案
- 質(zhì)量管理部工作流程圖
- 安全教育培訓(xùn)記錄表參考模板范本
- 建筑冷熱源素材
- 網(wǎng)絡(luò)安全用戶實體行為分析技術(shù)UEBA白皮書
- 室內(nèi)設(shè)計-中式古典風(fēng)格課件
- MOC3061驅(qū)動BT134雙向可控硅
- 無線通信與網(wǎng)絡(luò)復(fù)習(xí)資料
評論
0/150
提交評論