河南省鶴壁市2025屆高三數(shù)學第一學期期末復習檢測模擬試題含解析_第1頁
河南省鶴壁市2025屆高三數(shù)學第一學期期末復習檢測模擬試題含解析_第2頁
河南省鶴壁市2025屆高三數(shù)學第一學期期末復習檢測模擬試題含解析_第3頁
河南省鶴壁市2025屆高三數(shù)學第一學期期末復習檢測模擬試題含解析_第4頁
河南省鶴壁市2025屆高三數(shù)學第一學期期末復習檢測模擬試題含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

河南省鶴壁市2025屆高三數(shù)學第一學期期末復習檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知實數(shù)x,y滿足約束條件,若的最大值為2,則實數(shù)k的值為()A.1 B. C.2 D.2.已知集合,,則中元素的個數(shù)為()A.3 B.2 C.1 D.03.函數(shù)的圖象大致是()A. B.C. D.4.若集合,,則=()A. B. C. D.5.已知全集為,集合,則()A. B. C. D.6.已知實數(shù),滿足約束條件,則的取值范圍是()A. B. C. D.7.將函數(shù)的圖象沿軸向左平移個單位長度后,得到函數(shù)的圖象,則“”是“是偶函數(shù)”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件8.復數(shù)滿足,則()A. B. C. D.9.已知滿足,則()A. B. C. D.10.一個正三棱柱的正(主)視圖如圖,則該正三棱柱的側面積是()A.16 B.12 C.8 D.611.記個兩兩無交集的區(qū)間的并集為階區(qū)間如為2階區(qū)間,設函數(shù),則不等式的解集為()A.2階區(qū)間 B.3階區(qū)間 C.4階區(qū)間 D.5階區(qū)間12.盒中裝有形狀、大小完全相同的5張“刮刮卡”,其中只有2張“刮刮卡”有獎,現(xiàn)甲從盒中隨機取出2張,則至少有一張有獎的概率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在平行四邊形中,,,則的值為_____.14.在《九章算術》中,將底面為矩形且有一條側棱與底面垂直的四棱錐稱之為陽馬.如圖,若四棱錐為陽馬,側棱底面,且,,設該陽馬的外接球半徑為,內(nèi)切球半徑為,則__________.15.已知數(shù)列滿足,且恒成立,則的值為____________.16.設為等比數(shù)列的前項和,若,且,,成等差數(shù)列,則.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在長方體中,,為的中點,為的中點,為線段上一點,且滿足,為的中點.(1)求證:平面;(2)求二面角的余弦值.18.(12分)設為等差數(shù)列的前項和,且,.(1)求數(shù)列的通項公式;(2)若滿足不等式的正整數(shù)恰有個,求正實數(shù)的取值范圍.19.(12分)已知在中,角,,的對邊分別為,,,且.(1)求的值;(2)若,求面積的最大值.20.(12分)在四棱錐中,底面為直角梯形,,面.(1)在線段上是否存在點,使面,說明理由;(2)求二面角的余弦值.21.(12分)在中,角、、的對邊分別為、、,且.(1)若,,求的值;(2)若,求的值.22.(10分)在中,為邊上一點,,.(1)求;(2)若,,求.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

畫出約束條件的可行域,利用目標函數(shù)的幾何意義,求出最優(yōu)解,轉化求解即可.【詳解】可行域如圖中陰影部分所示,,,要使得z能取到最大值,則,當時,x在點B處取得最大值,即,得;當時,z在點C處取得最大值,即,得(舍去).故選:B.【點睛】本題考查由目標函數(shù)最值求解參數(shù)值,數(shù)形結合思想,分類討論是解題的關鍵,屬于中檔題.2、C【解析】

集合表示半圓上的點,集合表示直線上的點,聯(lián)立方程組求得方程組解的個數(shù),即為交集中元素的個數(shù).【詳解】由題可知:集合表示半圓上的點,集合表示直線上的點,聯(lián)立與,可得,整理得,即,當時,,不滿足題意;故方程組有唯一的解.故.故選:C.【點睛】本題考查集合交集的求解,涉及圓和直線的位置關系的判斷,屬基礎題.3、A【解析】

根據(jù)復合函數(shù)的單調(diào)性,同增異減以及采用排除法,可得結果.【詳解】當時,,由在遞增,所以在遞增又是增函數(shù),所以在遞增,故排除B、C當時,若,則所以在遞減,而是增函數(shù)所以在遞減,所以A正確,D錯誤故選:A【點睛】本題考查具體函數(shù)的大致圖象的判斷,關鍵在于對復合函數(shù)單調(diào)性的理解,記住常用的結論:增+增=增,增-減=增,減+減=減,復合函數(shù)單調(diào)性同增異減,屬中檔題.4、C【解析】試題分析:化簡集合故選C.考點:集合的運算.5、D【解析】

對于集合,求得函數(shù)的定義域,再求得補集;對于集合,解得一元二次不等式,再由交集的定義求解即可.【詳解】,,.故選:D【點睛】本題考查集合的補集、交集運算,考查具體函數(shù)的定義域,考查解一元二次不等式.6、B【解析】

畫出可行域,根據(jù)可行域上的點到原點距離,求得的取值范圍.【詳解】由約束條件作出可行域是由,,三點所圍成的三角形及其內(nèi)部,如圖中陰影部分,而可理解為可行域內(nèi)的點到原點距離的平方,顯然原點到所在的直線的距離是可行域內(nèi)的點到原點距離的最小值,此時,點到原點的距離是可行域內(nèi)的點到原點距離的最大值,此時.所以的取值范圍是.故選:B【點睛】本小題考查線性規(guī)劃,兩點間距離公式等基礎知識;考查運算求解能力,數(shù)形結合思想,應用意識.7、A【解析】

求出函數(shù)的解析式,由函數(shù)為偶函數(shù)得出的表達式,然后利用充分條件和必要條件的定義判斷即可.【詳解】將函數(shù)的圖象沿軸向左平移個單位長度,得到的圖象對應函數(shù)的解析式為,若函數(shù)為偶函數(shù),則,解得,當時,.因此,“”是“是偶函數(shù)”的充分不必要條件.故選:A.【點睛】本題考查充分不必要條件的判斷,同時也考查了利用圖象變換求三角函數(shù)解析式以及利用三角函數(shù)的奇偶性求參數(shù),考查運算求解能力與推理能力,屬于中等題.8、C【解析】

利用復數(shù)模與除法運算即可得到結果.【詳解】解:,故選:C【點睛】本題考查復數(shù)除法運算,考查復數(shù)的模,考查計算能力,屬于基礎題.9、A【解析】

利用兩角和與差的余弦公式展開計算可得結果.【詳解】,.故選:A.【點睛】本題考查三角求值,涉及兩角和與差的余弦公式的應用,考查計算能力,屬于基礎題.10、B【解析】

根據(jù)正三棱柱的主視圖,以及長度,可知該幾何體的底面正三角形的邊長,然后根據(jù)矩形的面積公式,可得結果.【詳解】由題可知:該幾何體的底面正三角形的邊長為2所以該正三棱柱的三個側面均為邊長為2的正方形,所以該正三棱柱的側面積為故選:B【點睛】本題考查正三棱柱側面積的計算以及三視圖的認識,關鍵在于求得底面正三角形的邊長,掌握一些常見的幾何體的三視圖,比如:三棱錐,圓錐,圓柱等,屬基礎題.11、D【解析】

可判斷函數(shù)為奇函數(shù),先討論當且時的導數(shù)情況,再畫出函數(shù)大致圖形,將所求區(qū)間端點值分別看作對應常函數(shù),再由圖形確定具體自變量范圍即可求解【詳解】當且時,.令得.可得和的變化情況如下表:令,則原不等式變?yōu)?,由圖像知的解集為,再次由圖像得到的解集由5段分離的部分組成,所以解集為5階區(qū)間.故選:D【點睛】本題考查由函數(shù)的奇偶性,單調(diào)性求解對應自變量范圍,導數(shù)法研究函數(shù)增減性,數(shù)形結合思想,轉化與化歸思想,屬于難題12、C【解析】

先計算出總的基本事件的個數(shù),再計算出兩張都沒獲獎的個數(shù),根據(jù)古典概型的概率,求出兩張都沒有獎的概率,由對立事件的概率關系,即可求解.【詳解】從5張“刮刮卡”中隨機取出2張,共有種情況,2張均沒有獎的情況有(種),故所求概率為.故選:C.【點睛】本題考查古典概型的概率、對立事件的概率關系,意在考查數(shù)學建模、數(shù)學計算能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

根據(jù)ABCD是平行四邊形可得出,然后代入AB=2,AD=1即可求出的值.【詳解】∵AB=2,AD=1,∴=1﹣4=﹣1.故答案為:﹣1.【點睛】本題考查了向量加法的平行四邊形法則,相等向量和相反向量的定義,向量數(shù)量積的運算,考查了計算能力,屬于基礎題.14、【解析】

該陽馬補形所得到的長方體的對角線為外接球的直徑,由此能求出,內(nèi)切球在側面內(nèi)的正視圖是的內(nèi)切圓,從而內(nèi)切球半徑為,由此能求出.【詳解】四棱錐為陽馬,側棱底面,且,,設該陽馬的外接球半徑為,該陽馬補形所得到的長方體的對角線為外接球的直徑,,,側棱底面,且底面為正方形,內(nèi)切球在側面內(nèi)的正視圖是的內(nèi)切圓,內(nèi)切球半徑為,故.故答案為.【點睛】本題考查了幾何體外接球和內(nèi)切球的相關問題,補形法的運用,以及數(shù)學文化,考查了空間想象能力,是中檔題.解決球與其他幾何體的切、接問題,關鍵是能夠確定球心位置,以及選擇恰當?shù)慕嵌茸龀鼋孛?球心位置的確定的方法有很多,主要有兩種:(1)補形法(構造法),通過補形為長方體(正方體),球心位置即為體對角線的中點;(2)外心垂線法,先找出幾何體中不共線三點構成的三角形的外心,再找出過外心且與不共線三點確定的平面垂直的垂線,則球心一定在垂線上.15、【解析】

易得,所以是等差數(shù)列,再利用等差數(shù)列的通項公式計算即可.【詳解】由已知,,因,所以,所以數(shù)列是以為首項,3為公差的等差數(shù)列,故,所以.故答案為:【點睛】本題考查由遞推數(shù)列求數(shù)列中的某項,考查學生等價轉化的能力,是一道容易題.16、.【解析】試題分析:∵,,成等差數(shù)列,∴,又∵等比數(shù)列,∴.考點:等差數(shù)列與等比數(shù)列的性質(zhì).【名師點睛】本題主要考查等差與等比數(shù)列的性質(zhì),屬于容易題,在解題過程中,需要建立關于等比數(shù)列基本量的方程即可求解,考查學生等價轉化的思想與方程思想.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】

(1)解法一:作的中點,連接,.利用三角形的中位線證得,利用梯形中位線證得,由此證得平面平面,進而證得平面.解法二:建立空間直角坐標系,通過證明直線的方向向量和平面的法向量垂直,證得平面.(2)利用平面和平面法向量,計算出二面角的余弦值.【詳解】(1)法一:作的中點,連接,.又為的中點,∴為的中位線,∴,又為的中點,∴為梯形的中位線,∴,在平面中,,在平面中,,∴平面平面,又平面,∴平面.另解:(法二)∵在長方體中,,,兩兩互相垂直,建立空間直角坐標系如圖所示,則,,,,,,,,,,,.(1)設平面的一個法向量為,則,令,則,.∴,又,∵,,又平面,平面.(2)設平面的一個法向量為,則,令,則,.∴.同理可算得平面的一個法向量為∴,又由圖可知二面角的平面角為一個鈍角,故二面角的余弦值為.【點睛】本小題考查線面的位置關系,空間向量與線面角,二面角等基礎知識,考查空間想象能力,推理論證能力,運算求解能力,數(shù)形結合思想,化歸與轉化思想.18、(1);(2).【解析】

(1)設等差數(shù)列的公差為,根據(jù)題意得出關于和的方程組,解出這兩個量的值,然后利用等差數(shù)列的通項公式可得出數(shù)列的通項公式;(2)求出,可得出,可知當為奇數(shù)時不等式不成立,只考慮為偶數(shù)的情況,利用數(shù)列單調(diào)性的定義判斷數(shù)列中偶數(shù)項構成的數(shù)列的單調(diào)性,由此能求出正實數(shù)的取值范圍.【詳解】(1)設等差數(shù)列的公差為,則,整理得,解得,,因此,;(2),滿足不等式的正整數(shù)恰有個,得,由于,若為奇數(shù),則不等式不可能成立.只考慮為偶數(shù)的情況,令,則,..當時,,則;當時,,則;當時,,則.所以,,又,,,,.因此,實數(shù)的取值范圍是.【點睛】本題考查數(shù)列的通項公式的求法,考查正實數(shù)的取值范圍的求法,考查等差數(shù)列的性質(zhì)等基礎知識,考查運算求解能力,是中檔題.19、(1);(2).【解析】分析:(1)在式子中運用正弦、余弦定理后可得.(2)由經(jīng)三角變換可得,然后運用余弦定理可得,從而得到,故得.詳解:(1)由題意及正、余弦定理得,整理得,∴(2)由題意得,∴,∵,∴,∴.由余弦定理得,∴,,當且僅當時等號成立.∴.∴面積的最大值為.點睛:(1)正、余弦定理經(jīng)常與三角形的面積綜合在一起考查,解題時要注意整體代換的應用,如余弦定理中常用的變形,這樣自然地與三角形的面積公式結合在一起.(2)運用基本不等式求最值時,要注意等號成立的條件,在解題中必須要注明.20、(1)存在;詳見解析(2)【解析】

(1)利用面面平行的性質(zhì)定理可得,為上靠近點的三等分點,中點,證明平面平面即得;(2)過作交于,可得兩兩垂直,以分別為軸建立空間直角坐標系,求出長,寫出各點坐標,用向量法求二面角.【詳解】解:(1)當為上靠近點的三等分點時,滿足面.證明如下,取中點,連結.即易得所以面面,即面.(2)過作交于面,兩兩垂直,以分別為軸建立空間直角坐標系,如圖,設面法向量,則,即取同理可得面的法向量綜上可知銳二面角的余弦值為.【點睛】本題考查立體幾何中的存探索性命題,考查用空間向量法求二面角.線面平行問題可通過面面平行解決,一定要掌握:立體幾何中線線平行、線面平行、面面平行是相互轉化、相互依存的.求空間角一般是建立空間直角坐標系,用空間向量法求空間角.21、(1);(2).【解析】

(1)利用余弦定理得出關于的二次方程,結合,可求出的值;(2)利用兩角和的余弦公式以及誘導公式可求出的值,利用同角三角函數(shù)的基本關系求出的值,然后利用二倍角的正切公式可

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論