版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2025屆柳州鐵路第一中學數(shù)學高三上期末教學質量檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知定義在上函數(shù)的圖象關于原點對稱,且,若,則()A.0 B.1 C.673 D.6742.已知分別為雙曲線的左、右焦點,過的直線與雙曲線的左、右兩支分別交于兩點,若,則雙曲線的離心率為()A. B.4 C.2 D.3.體育教師指導4個學生訓練轉身動作,預備時,4個學生全部面朝正南方向站成一排.訓練時,每次都讓3個學生“向后轉”,若4個學生全部轉到面朝正北方向,則至少需要“向后轉”的次數(shù)是()A.3 B.4 C.5 D.64.如圖,網(wǎng)格紙是由邊長為1的小正方形構成,若粗實線畫出的是某幾何體的三視圖,則該幾何體的表面積為()A. B. C. D.5.已知是等差數(shù)列的前項和,,,則()A.85 B. C.35 D.6.已知向量,,若,則與夾角的余弦值為()A. B. C. D.7.很多關于整數(shù)規(guī)律的猜想都通俗易懂,吸引了大量的數(shù)學家和數(shù)學愛好者,有些猜想已經(jīng)被數(shù)學家證明,如“費馬大定理”,但大多猜想還未被證明,如“哥德巴赫猜想”、“角谷猜想”.“角谷猜想”的內(nèi)容是:對于每一個正整數(shù),如果它是奇數(shù),則將它乘以再加1;如果它是偶數(shù),則將它除以;如此循環(huán),最終都能夠得到.下圖為研究“角谷猜想”的一個程序框圖.若輸入的值為,則輸出i的值為()A. B. C. D.8.記等差數(shù)列的公差為,前項和為.若,,則()A. B. C. D.9.函數(shù)的一個單調遞增區(qū)間是()A. B. C. D.10.在中,,分別為,的中點,為上的任一點,實數(shù),滿足,設、、、的面積分別為、、、,記(),則取到最大值時,的值為()A.-1 B.1 C. D.11.若復數(shù)滿足,則()A. B. C. D.12.在直角梯形中,,,,,點為上一點,且,當?shù)闹底畲髸r,()A. B.2 C. D.二、填空題:本題共4小題,每小題5分,共20分。13.一個袋中裝著標有數(shù)字1,2,3,4,5的小球各2個,從中任意摸取3個小球,每個小球被取出的可能性相等,則取出的3個小球中數(shù)字最大的為4的概率是__.14.如圖是九位評委打出的分數(shù)的莖葉統(tǒng)計圖,去掉一個最高分和一個最低分后,所剩數(shù)據(jù)的平均分為_______.15.如圖,半球內(nèi)有一內(nèi)接正四棱錐,該四棱錐的體積為,則該半球的體積為__________.16.函數(shù)與的圖象上存在關于軸的對稱點,則實數(shù)的取值范圍為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標系中,圓的參數(shù)方程為(為參數(shù)),以為極點,軸的非負半軸為極軸建立極坐標系.(1)求圓的極坐標方程;(2)直線的極坐標方程是,射線與圓的交點為、,與直線的交點為,求線段的長.18.(12分)已知函數(shù).(1)當時,求函數(shù)的圖象在處的切線方程;(2)討論函數(shù)的單調性;(3)當時,若方程有兩個不相等的實數(shù)根,求證:.19.(12分)已知函數(shù),其中.(1)①求函數(shù)的單調區(qū)間;②若滿足,且.求證:.(2)函數(shù).若對任意,都有,求的最大值.20.(12分)已知橢圓,上、下頂點分別是、,上、下焦點分別是、,焦距為,點在橢圓上.(1)求橢圓的方程;(2)若為橢圓上異于、的動點,過作與軸平行的直線,直線與交于點,直線與直線交于點,判斷是否為定值,說明理由.21.(12分)如圖,是矩形,的頂點在邊上,點,分別是,上的動點(的長度滿足需求).設,,,且滿足.(1)求;(2)若,,求的最大值.22.(10分)已知,,函數(shù)的最小值為.(1)求證:;(2)若恒成立,求實數(shù)的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
由題知為奇函數(shù),且可得函數(shù)的周期為3,分別求出知函數(shù)在一個周期內(nèi)的和是0,利用函數(shù)周期性對所求式子進行化簡可得.【詳解】因為為奇函數(shù),故;因為,故,可知函數(shù)的周期為3;在中,令,故,故函數(shù)在一個周期內(nèi)的函數(shù)值和為0,故.故選:B.【點睛】本題考查函數(shù)奇偶性與周期性綜合問題.其解題思路:函數(shù)的奇偶性與周期性相結合的問題多考查求值問題,常利用奇偶性及周期性進行變換,將所求函數(shù)值的自變量轉化到已知解析式的函數(shù)定義域內(nèi)求解.2、A【解析】
由已知得,,由已知比值得,再利用雙曲線的定義可用表示出,,用勾股定理得出的等式,從而得離心率.【詳解】.又,可令,則.設,得,即,解得,∴,,由得,,,該雙曲線的離心率.故選:A.【點睛】本題考查求雙曲線的離心率,解題關鍵是由向量數(shù)量積為0得出垂直關系,利用雙曲線的定義把雙曲線上的點到焦點的距離都用表示出來,從而再由勾股定理建立的關系.3、B【解析】
通過列舉法,列舉出同學的朝向,然后即可求出需要向后轉的次數(shù).【詳解】“正面朝南”“正面朝北”分別用“∧”“∨”表示,利用列舉法,可得下表,原始狀態(tài)第1次“向后轉”第2次“向后轉”第3次“向后轉”第4次“向后轉”∧∧∧∧∧∨∨∨∨∨∧∧∧∧∧∨∨∨∨∨可知需要的次數(shù)為4次.故選:B.【點睛】本題考查的是求最小推理次數(shù),一般這類題型構造較為巧妙,可通過列舉的方法直觀感受,屬于基礎題.4、C【解析】
根據(jù)三視圖還原為幾何體,結合組合體的結構特征求解表面積.【詳解】由三視圖可知,該幾何體可看作是半個圓柱和一個長方體的組合體,其中半圓柱的底面半圓半徑為1,高為4,長方體的底面四邊形相鄰邊長分別為1,2,高為4,所以該幾何體的表面積,故選C.【點睛】本題主要考查三視圖的識別,利用三視圖還原成幾何體是求解關鍵,側重考查直觀想象和數(shù)學運算的核心素養(yǎng).5、B【解析】
將已知條件轉化為的形式,求得,由此求得.【詳解】設公差為,則,所以,,,.故選:B【點睛】本小題主要考查等差數(shù)列通項公式的基本量計算,考查等差數(shù)列前項和的計算,屬于基礎題.6、B【解析】
直接利用向量的坐標運算得到向量的坐標,利用求得參數(shù)m,再用計算即可.【詳解】依題意,,而,即,解得,則.故選:B.【點睛】本題考查向量的坐標運算、向量數(shù)量積的應用,考查運算求解能力以及化歸與轉化思想.7、B【解析】
根據(jù)程序框圖列舉出程序的每一步,即可得出輸出結果.【詳解】輸入,不成立,是偶數(shù)成立,則,;不成立,是偶數(shù)不成立,則,;不成立,是偶數(shù)成立,則,;不成立,是偶數(shù)成立,則,;不成立,是偶數(shù)成立,則,;不成立,是偶數(shù)成立,則,;成立,跳出循環(huán),輸出i的值為.故選:B.【點睛】本題考查利用程序框圖計算輸出結果,考查計算能力,屬于基礎題.8、C【解析】
由,和,可求得,從而求得和,再驗證選項.【詳解】因為,,所以解得,所以,所以,,,故選:C.【點睛】本題考查等差數(shù)列的通項公式、前項和公式,還考查運算求解能力,屬于中檔題.9、D【解析】
利用同角三角函數(shù)的基本關系式、二倍角公式和輔助角公式化簡表達式,再根據(jù)三角函數(shù)單調區(qū)間的求法,求得的單調區(qū)間,由此確定正確選項.【詳解】因為,由單調遞增,則(),解得(),當時,D選項正確.C選項是遞減區(qū)間,A,B選項中有部分增區(qū)間部分減區(qū)間.故選:D【點睛】本小題考查三角函數(shù)的恒等變換,三角函數(shù)的圖象與性質等基礎知識;考查運算求解能力,推理論證能力,數(shù)形結合思想,應用意識.10、D【解析】
根據(jù)三角形中位線的性質,可得到的距離等于△的邊上高的一半,從而得到,由此結合基本不等式求最值,得到當取到最大值時,為的中點,再由平行四邊形法則得出,根據(jù)平面向量基本定理可求得,從而可求得結果.【詳解】如圖所示:因為是△的中位線,所以到的距離等于△的邊上高的一半,所以,由此可得,當且僅當時,即為的中點時,等號成立,所以,由平行四邊形法則可得,,將以上兩式相加可得,所以,又已知,根據(jù)平面向量基本定理可得,從而.故選:D【點睛】本題考查了向量加法的平行四邊形法則,考查了平面向量基本定理的應用,考查了基本不等式求最值,屬于中檔題.11、B【解析】
由題意得,,求解即可.【詳解】因為,所以.故選:B.【點睛】本題考查復數(shù)的四則運算,考查運算求解能力,屬于基礎題.12、B【解析】
由題,可求出,所以,根據(jù)共線定理,設,利用向量三角形法則求出,結合題給,得出,進而得出,最后利用二次函數(shù)求出的最大值,即可求出.【詳解】由題意,直角梯形中,,,,,可求得,所以·∵點在線段上,設,則,即,又因為所以,所以,當時,等號成立.所以.故選:B.【點睛】本題考查平面向量線性運算中的加法運算、向量共線定理,以及運用二次函數(shù)求最值,考查轉化思想和解題能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由題,得滿足題目要求的情況有,①有一個數(shù)字4,另外兩個數(shù)字從1,2,3里面選和②有兩個數(shù)字4,另外一個數(shù)字從1,2,3里面選,由此即可得到本題答案.【詳解】滿足題目要求的情況可以分成2大類:①有一個數(shù)字4,另外兩個數(shù)字從1,2,3里面選,一共有種情況;②有兩個數(shù)字4,另外一個數(shù)字從1,2,3里面選,一共有種情況,又從中任意摸取3個小球,有種情況,所以取出的3個小球中數(shù)字最大的為4的概率.故答案為:【點睛】本題主要考查古典概型與組合的綜合問題,考查學生分析問題和解決問題的能力.14、1【解析】
寫出莖葉圖對應的所有的數(shù),去掉最高分,最低分,再求平均分.【詳解】解:所有的數(shù)為:77,78,82,84,84,86,88,93,94,共9個數(shù),去掉最高分,最低分,剩下78,82,84,84,86,88,93,共7個數(shù),平均分為,故答案為1.【點睛】本題考查莖葉圖及平均數(shù)的計算,屬于基礎題.15、【解析】
由題意可知半球的半徑與正四棱錐的高相等,可得正四棱錐的棱與半徑的關系,進而可寫出半球的半徑與四棱錐體積的關系,進而求得結果.【詳解】設所給半球的半徑為,則四棱錐的高,則,由四棱錐的體積,半球的體積為:.【方法點睛】涉及球與棱柱、棱錐的切、接問題時,一般過球心及多面體中的特殊點(一般為接、切點)或線作截面,把空間問題轉化為平面問題,再利用平面幾何知識尋找?guī)缀误w中元素間的關系,或只畫內(nèi)切、外接的幾何體的直觀圖,確定球心的位置,弄清球的半徑(直徑)與該幾何體已知量的關系,列方程(組)求解.16、【解析】
先求得與關于軸對稱的函數(shù),將問題轉化為與的圖象有交點,即方程有解.對分成三種情況進行分類討論,由此求得實數(shù)的取值范圍.【詳解】因為關于軸對稱的函數(shù)為,因為函數(shù)與的圖象上存在關于軸的對稱點,所以與的圖象有交點,方程有解.時符合題意.時轉化為有解,即,的圖象有交點,是過定點的直線,其斜率為,若,則函數(shù)與的圖象必有交點,滿足題意;若,設,相切時,切點的坐標為,則,解得,切線斜率為,由圖可知,當,即時,,的圖象有交點,此時,與的圖象有交點,函數(shù)與的圖象上存在關于軸的對稱點,綜上可得,實數(shù)的取值范圍為.故答案為:【點睛】本小題主要考查利用導數(shù)求解函數(shù)的零點以及對稱性,函數(shù)與方程等基礎知識,考查學生分析問題,解決問題的能力,推理與運算求解能力,轉化與化歸思想和應用意識.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)首先將參數(shù)方程轉化為普通方程再根據(jù)公式化為極坐標方程即可;(2)設,,由,即可求出,則計算可得;【詳解】解:(1)圓的參數(shù)方程(為參數(shù))可化為,∴,即圓的極坐標方程為.(2)設,由,解得.設,由,解得.∵,∴.【點睛】本題考查了利用極坐標方程求曲線的交點弦長,考查了推理能力與計算能力,屬于中檔題.18、(1);(2)當時,在上是減函數(shù);當時,在上是增函數(shù);(3)證明見解析.【解析】
(1)當時,,求得其導函數(shù),,可求得函數(shù)的圖象在處的切線方程;(2)由已知得,得出導函數(shù),并得出導函數(shù)取得正負的區(qū)間,可得出函數(shù)的單調性;(3)當時,,,由(2)得的單調區(qū)間,以當方程有兩個不相等的實數(shù)根,不妨設,且有,,構造函數(shù),分析其導函數(shù)的正負得出函數(shù)的單調性,得出其最值,所證的不等式可得證.【詳解】(1)當時,,所以,,所以函數(shù)的圖象在處的切線方程為,即;(2)由已知得,,令,得,所以當時,,當時,,所以在上是減函數(shù),在上是增函數(shù);(3)當時,,,由(2)得在上單調遞減,在單調遞增,所以,且時,,當時,,,所以當方程有兩個不相等的實數(shù)根,不妨設,且有,,構造函數(shù),則,當時,所以,在上單調遞減,且,,由,在上單調遞增,.所以.【點睛】本題考查運用導函數(shù)求函數(shù)在某點的切線方程,討論函數(shù)的單調性,以及證明不等式,關鍵在于構造適當?shù)暮瘮?shù),得出其導函數(shù)的正負,得出所構造的函數(shù)的單調性,屬于難度題.19、(1)①單調遞增區(qū)間,,單調遞減區(qū)間;②詳見解析;(2).【解析】
(1)①求導可得,再分別求解與的解集,結合定義域分析函數(shù)的單調區(qū)間即可.②根據(jù)(1)中的結論,求出的表達式,再分與兩種情況,結合函數(shù)的單調性分析的范圍即可.(2)求導分析的單調性,再結合單調性,設去絕對值化簡可得,再構造函數(shù),,根據(jù)函數(shù)的單調性與恒成立問題可知,再換元表達求解最大值即可.【詳解】解:,由可得或,由可得,故函數(shù)的單調遞增區(qū)間,,單調遞減區(qū)間;,或,若,因為,故,,由知在上單調遞增,,若由可得x1,因為,所以,由在上單調遞增,綜上.時,,在上單調遞減,不妨設由(1)在上單調遞減,由,可得,所以,令,,可得單調遞減,所以在上恒成立,即在上恒成立,即,所以,,所以的最大值.【點睛】本題主要考查了分類討論分析函數(shù)單調性的問題,同時也考查了利用導數(shù)求解函數(shù)不等式以及構造函數(shù)分析函數(shù)的最值解決恒成立的問題.需要根據(jù)題意結合定義域與單調性分析函數(shù)的取值范圍與最值等.屬于難題.20、(1);(2),理由見解析.【解析】
(1)求出橢圓的上、下焦點坐標,利用橢圓的定義求得的值,進而可求得的值,由此可得出橢圓的方程;(2)設點的坐標為,求出直線的方程,求出點的坐標,由此計算出直線和的斜率,可計算出的值,進而可求得的值,即可得出結論.【詳解】(1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 四川省成都市雙流中學2025屆高三最后一卷語文試卷含解析
- 安徽省合肥一中2025屆高考語文全真模擬密押卷含解析
- 2025屆河南省豫西南部分示范性高中高三二診模擬考試英語試卷含解析
- 《solidworks 機械設計實例教程》 課件 任務4.2 齒輪軸的設計
- 浙江省高中發(fā)展共同體2025屆高考英語一模試卷含解析
- 《保險業(yè)案件管理》課件
- 普通高等學校2025屆高考英語三模試卷含解析
- 《設備管理制度講》課件
- 2025屆四川大學附屬中學高考英語考前最后一卷預測卷含解析
- 湖北省部分高中2025屆高考臨考沖刺語文試卷含解析
- 2023-2024學年全國小學四年級上語文人教版期末試卷(含答案解析)
- 華潤雙鶴財務報表分析報告
- 牙科診所傳染病報告制度
- 以諾書-中英對照
- 《義務教育數(shù)學課程標準(2022年版)》數(shù)學新課標解讀
- 精神科護士進修匯報
- 2024年新人教版四年級數(shù)學上冊《第5單元第6課時 平行四邊形和梯形復習》教學課件
- 《北斗每一顆星都在閃亮》教案- 2023-2024學年高教版(2023)中職語文職業(yè)模塊
- 咪咕在線測評題
- 專職消防隊和義務消防隊的組織管理制度
- 2023年新高考北京卷化學高考真題(含解析)
評論
0/150
提交評論