版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2025屆福建寧德市高二上數(shù)學(xué)期末綜合測試模擬試題注意事項(xiàng)1.考生要認(rèn)真填寫考場號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知點(diǎn)是拋物線上的一點(diǎn),F是拋物線的焦點(diǎn),則點(diǎn)M到F的距離等于()A.6 B.5C.4 D.22.點(diǎn),是橢圓的左焦點(diǎn),是橢圓上任意一點(diǎn),則的取值范圍是()A. B.C. D.3.已知函數(shù)滿足對于恒成立,設(shè)則下列不等關(guān)系正確是()A. B.C. D.4.已知空間中四點(diǎn),,,,則點(diǎn)D到平面ABC的距離為()A. B.C. D.05.已知,則下列三個(gè)數(shù),,()A.都不大于-4 B.至少有一個(gè)不大于-4C.都不小于-4 D.至少有一個(gè)不小于-46.已知直線是圓的對稱軸,過點(diǎn)A作圓C的一條切線,切點(diǎn)為B,則|AB|=()A.1 B.2C.4 D.87.設(shè),,,則a,b,c的大小關(guān)系為()A. B.C. D.8.若存在過點(diǎn)(0,-2)的直線與曲線和曲線都相切,則實(shí)數(shù)a的值是()A.2 B.1C.0 D.-29.已知等比數(shù)列的首項(xiàng)為1,公比為2,則=()A. B.C. D.10.如圖所示,在三棱錐中,E,F(xiàn)分別是AB,BC的中點(diǎn),則等于()A. B.C. D.11.中國大運(yùn)河項(xiàng)目成功人選世界文化遺產(chǎn)名錄,成為中國第46個(gè)世界遺產(chǎn)項(xiàng)目,隨著對大運(yùn)河的保護(hù)與開發(fā),大運(yùn)河已成為北京城市副中心的一張亮麗的名片,也成為眾多旅游者的游覽目的地.今有一旅游團(tuán)乘游船從奧體公園碼頭出發(fā)順流而下至漕運(yùn)碼頭,又立即逆水返回奧體公園碼頭,已知游船在順?biāo)械乃俣葹椋谀嫠械乃俣葹?,則游船此次行程的平均速度V與的大小關(guān)系是()A. B.C. D.12.若方程表示雙曲線,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知球的表面積是,則該球的體積為________.14.在學(xué)習(xí)《曲線與方程》的課堂上,老師給出兩個(gè)曲線方程;,老師問同學(xué)們:你想到了什么?能得到哪些結(jié)論?下面是四位同學(xué)的回答:甲:曲線關(guān)于對稱;乙:曲線關(guān)于原點(diǎn)對稱;丙:曲線與坐標(biāo)軸在第一象限圍成的圖形面積;?。呵€與坐標(biāo)軸在第一象限圍成的圖形面積;四位同學(xué)回答正確的有______(選填“甲、乙、丙、丁”)15.求值______.16.在一平面直角坐標(biāo)系中,已知,現(xiàn)沿x軸將坐標(biāo)平面折成60°的二面角,則折疊后A,B兩點(diǎn)間的距離為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)橢圓的左、右焦點(diǎn)分別為,,離心率為,短軸長為.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)左、右頂點(diǎn)分別為、,點(diǎn)在橢圓上(異于點(diǎn)、),求的值;(3)過點(diǎn)作一條直線與橢圓交于兩點(diǎn),過作直線的垂線,垂足為.試問:直線與是否交于定點(diǎn)?若是,求出該定點(diǎn)的坐標(biāo),否則說明理由.18.(12分)已知函數(shù).(1)當(dāng)時(shí),討論的單調(diào)性;(2)當(dāng)時(shí),證明:.19.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)當(dāng)a=1時(shí),對于任意的,,都有恒成立,則m的取值范圍.20.(12分)已知橢圓的離心率為,左、右焦點(diǎn)分別為,,過的直線交橢圓E于A,B兩點(diǎn).當(dāng)軸時(shí),(1)求橢圓E的方程;(2)求的范圍21.(12分)已知如圖①,在菱形ABCD中,且,為AD的中點(diǎn),將沿BE折起使,得到如圖②所示的四棱錐,在四棱錐中,求解下列問題:(1)求證:BC平面ABE;(2)若P為AC中點(diǎn),求二面角的余弦值.22.(10分)在平面直角坐標(biāo)系xOy中,拋物線:,點(diǎn),過點(diǎn)的直線l與拋物線交于A,B兩點(diǎn):當(dāng)l與拋物線的對稱軸垂直時(shí),(1)求拋物線的標(biāo)準(zhǔn)方程;(2)若點(diǎn)A在第一象限,記的面積為,的面積為,求的最小值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】先求出,再利用焦半徑公式即可獲解.【詳解】由題意,,解得所以故選:B.2、A【解析】由,當(dāng)三點(diǎn)共線時(shí),取得最值【詳解】設(shè)是橢圓的右焦點(diǎn),則又因?yàn)?,,所以,則故選:A3、A【解析】由條件可得函數(shù)為上的增函數(shù),構(gòu)造函數(shù),利用函數(shù)單調(diào)性比較的大小,再根據(jù)函數(shù)的單調(diào)性確定各選項(xiàng)的對錯(cuò).【詳解】設(shè),則,∵,∴,∴函數(shù)在上為增函數(shù),∵,∴,故,所以,C錯(cuò),令(),則,當(dāng)時(shí),,當(dāng)時(shí),∴函數(shù)在區(qū)間上為增函數(shù),在區(qū)間上為減函數(shù),又,∴,∴,即,∴,故,所以,D錯(cuò),,故,所以,A對,,故,所以,B錯(cuò),故選:A.4、C【解析】根據(jù)題意,求得平面的一個(gè)法向量,結(jié)合距離公式,即可求解.【詳解】由題意,空間中四點(diǎn),,,,可得,設(shè)平面的法向量為,則,令,可得,所以,所以點(diǎn)D到平面ABC的距離為.故選:C.5、B【解析】利用反證法設(shè),,都大于,結(jié)合基本不等式即可得出結(jié)論.【詳解】設(shè),,都大于,則,由于,故,利用基本不等式可得,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,這與假設(shè)所得結(jié)論矛盾,故假設(shè)不成立,故下列三個(gè)數(shù),,至少有一個(gè)不大于,故選:B.6、C【解析】首先將圓心坐標(biāo)代入直線方程求出參數(shù)a,求得點(diǎn)A的坐標(biāo),由切線與圓的位置關(guān)系構(gòu)造直角三角形從而求得.【詳解】圓即,圓心為,半徑為r=3,由題意可知過圓的圓心,則,解得,點(diǎn)A坐標(biāo)為,,切點(diǎn)為B則,故選:C【點(diǎn)睛】本題考查直線與圓的位置關(guān)系,屬于基礎(chǔ)題.7、A【解析】構(gòu)造函數(shù),求導(dǎo)判斷其單調(diào)性即可【詳解】令,,令得,,當(dāng)時(shí),,單調(diào)遞增,,,,,,,故選:A8、A【解析】在兩曲線上設(shè)切點(diǎn),得到切線,又因?yàn)椋?,-2)在兩條切線上,列方程即可.【詳解】的導(dǎo)函數(shù)為,的導(dǎo)函數(shù)為,若直線與和的切點(diǎn)分別為(,),,∴過(0,-2)的直線為、,則有,可得故選:A.9、D【解析】數(shù)列是首項(xiàng)為1,公比為4的等比數(shù)列,然后可算出答案.【詳解】因?yàn)榈缺葦?shù)列的首項(xiàng)為1,公比為2,所以數(shù)列是首項(xiàng)為1,公比為4的等比數(shù)列所以故選:D10、D【解析】根據(jù)向量的線性運(yùn)算公式化簡可得結(jié)果.【詳解】因?yàn)镋,F(xiàn)分別是AB,AC的中點(diǎn),所以,,所以,故選:D11、A【解析】求出平均速度V,進(jìn)而結(jié)合基本不等式求得答案.【詳解】易知,設(shè)奧運(yùn)公園碼頭到漕運(yùn)碼頭之間的距離為1,則游船順流而下的時(shí)間為,逆流而上的時(shí)間為,則平均速度,由基本不等式可得,而,當(dāng)且僅當(dāng)時(shí),兩個(gè)不等式都取得“=”,而根據(jù)題意,于是.故選:A.12、C【解析】根據(jù)曲線方程表示雙曲線方程有,即可求參數(shù)范圍.【詳解】由題設(shè),,可得.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設(shè)球的半徑為r,代入表面積公式,可解得,代入體積公式,即可得答案.【詳解】設(shè)球的半徑為r,則表面積,解得,所以體積,故答案為:【點(diǎn)睛】本題考查已知球的表面積求體積,關(guān)鍵是求出半徑,再進(jìn)行求解,考查基礎(chǔ)知識(shí)掌握程度,屬基礎(chǔ)題.14、甲、乙、丙、丁【解析】結(jié)合對稱性判斷甲、乙的正確性;通過對比和與坐標(biāo)軸在第一象限圍成的圖形面積來判斷丙丁的正確性.【詳解】對于甲:交換方程中和的位置得,所以曲線關(guān)于對稱,甲回答正確.對于乙:和兩個(gè)點(diǎn)都滿足方程,所以曲線關(guān)于原點(diǎn)對稱,乙回答正確.對于丙:直線與坐標(biāo)軸在第一象限圍成的圖形面積為,,,在第一象限,直線與曲線都滿足,,,所以在第一象限,直線的圖象在曲線的圖象上方,所以,丙回答正確.對于?。簣A與坐標(biāo)軸在第一象限圍成的圖形面積為,在第一象限,曲線與曲線都滿足,,,,所以在第一象限,曲線的圖象在曲線的圖象下方,所以,丁回答正確.故答案為:甲、乙、丙、丁15、【解析】將原式子變形為:,將代入變形后的式子得到結(jié)果即可.【詳解】將代入變形后的式子得到結(jié)果為故答案為:16、【解析】平面直角坐標(biāo)系中,沿軸將坐標(biāo)平面折成的二面角后,在平面上的射影為,作軸,交軸于點(diǎn),通過用向量的數(shù)量積轉(zhuǎn)化求解距離即可.【詳解】在直角坐標(biāo)系中,已知,現(xiàn)沿軸將坐標(biāo)平面折成的二面角后,在平面上的射影為,作軸,交軸于點(diǎn),所以,所以,所以,故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2);(3)是,.【解析】(1)由題意,列出所滿足的等量關(guān)系式,結(jié)合橢圓中的關(guān)系,求得,從而求得橢圓的方程;(2)寫出,設(shè),利用斜率坐標(biāo)公式求得兩直線斜率,結(jié)合點(diǎn)在橢圓上,得出,從而求得結(jié)果;(3)設(shè)直線的方程為:,,則,聯(lián)立方程可得:,結(jié)合韋達(dá)定理,得到,結(jié)合直線的方程,得到直線所過的定點(diǎn)坐標(biāo).【詳解】(1)由題意可知,,又,所以,所以橢圓的標(biāo)準(zhǔn)方程為:.(2),設(shè),因?yàn)辄c(diǎn)在橢圓上,所以,,又,.(3)設(shè)直線的方程為:,,則,聯(lián)立方程可得:,所以,所以,又直線的方程為:,令,則,所以直線恒過,同理,直線恒過,即直線與交于定點(diǎn).【點(diǎn)睛】思路點(diǎn)睛:該題考查是有關(guān)橢圓的問題,解題思路如下:(1)根據(jù)題中所給的條件,結(jié)合橢圓中的關(guān)系,建立方程組求得橢圓方程;(2)根據(jù)斜率坐標(biāo)公式,結(jié)合點(diǎn)在橢圓上,整理求得斜率之積,可以當(dāng)結(jié)論來用;(3)將直線與橢圓方程聯(lián)立,結(jié)合韋達(dá)定理,結(jié)合直線方程,求得其過的定點(diǎn).18、(1)在上單調(diào)遞減,在上單調(diào)遞增(2)證明見解析【解析】(1)當(dāng)時(shí),利用求得的單調(diào)區(qū)間.(2)將問題轉(zhuǎn)化為證明,利用導(dǎo)數(shù)求得的最小值大于零,從而證得不等式成立.【小問1詳解】當(dāng)時(shí),,且,又與均在上單調(diào)遞增,所以在上單調(diào)遞增.當(dāng)時(shí),單調(diào)遞減;當(dāng)時(shí),單調(diào)遞增綜上,在上單調(diào)遞減,在上單調(diào)遞增.【小問2詳解】因?yàn)?,所以,要證,只需證當(dāng)時(shí),即可.,易知在上單調(diào)遞增,又,所以,且,即,當(dāng)時(shí),單調(diào)遞減;當(dāng)時(shí),單調(diào)遞增,,所以.【點(diǎn)睛】在證明不等式的過程中,直接證明困難時(shí),可考慮證明和兩個(gè)不等式成立,從而證得成立.19、(1)答案見解析;(2).【解析】(1)由題可得,利用導(dǎo)數(shù)與單調(diào)性關(guān)系分類討論即得;(2)由題可得,利用函數(shù)的單調(diào)性及極值求函數(shù)最值即得.【小問1詳解】由題可得的定義域?yàn)椋?,恒有,?dāng)時(shí),,當(dāng)時(shí),,∴在上單調(diào)遞增,在上單調(diào)遞減,若,令,得,若,恒有在上單調(diào)遞增,若,當(dāng)時(shí),;當(dāng)時(shí),,故在和上單調(diào)遞增,在上單調(diào)遞減,若,當(dāng)時(shí),;當(dāng)時(shí),,故在和上單調(diào)遞增,在上單調(diào)遞減;綜上所述,當(dāng),在上單調(diào)遞增,在上單調(diào)遞減,當(dāng),在和上單調(diào)遞增,在上單調(diào)遞減,當(dāng),在上單調(diào)遞增,當(dāng),在和上單調(diào)遞增,在上單調(diào)遞減;【小問2詳解】由(1)知,時(shí),在和上單調(diào)遞增,在上單調(diào)遞減;當(dāng)a=1時(shí),,,,∴.又,,∴.由題意得,,∴.20、(1)(2)【解析】(1)根據(jù)離心率及通徑長求出橢圓方程;(2)分直線AB斜率存在和斜率不存在兩種情況得到的范圍,進(jìn)而得到答案.【小問1詳解】當(dāng)軸時(shí),取代入橢圓方程得:,得,所以,又,解得,,所以橢圓方程為【小問2詳解】由,記,當(dāng)軸時(shí),由(1)知:,所以,當(dāng)AB斜率為k時(shí),直線AB為,,消去y得,所以,,所以,綜上,的范圍是.21、(1)證明見解析;(2)【解析】(1)利用題中所給的條件證明,,因?yàn)椋?,,即可證明平面;(2)先證明平面,以為坐標(biāo)原點(diǎn),,,的方向分別為軸,軸,軸,建立如圖所示的空間直角坐標(biāo)系,求出平面的一個(gè)法向量,平面的一個(gè)法向量,利用向量的夾角公式即可求解【詳解】(1)在圖①中,連接,如圖所示:因?yàn)樗倪呅螢榱庑?,,所以是等邊三角?因?yàn)闉榈闹悬c(diǎn),所以,.又,所以.在圖②中,,所以,即.因?yàn)?,所以?又,,平面.所以平面.(2)由(1)知,,因?yàn)椋?,平?所以平面.以為坐標(biāo)原點(diǎn),,,的方向分別為軸,軸,軸,建立如圖所示的空間直角坐標(biāo)系:則,,,,.因?yàn)闉榈闹悬c(diǎn),所以.所以,.設(shè)平面的一個(gè)法向量為,由得.令,得,,所以.設(shè)平面的一個(gè)法向量
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年豪華別墅租賃協(xié)議
- 2024中介租房合同范本:生態(tài)農(nóng)業(yè)園區(qū)中介租賃服務(wù)協(xié)議3篇
- 2025大型吊車包月租賃合同
- 消防車抵押合同
- 建筑規(guī)劃制作施工合同
- 2025水利工程維修合同模板
- 2025(運(yùn)輸車)車輛租賃合同
- 2024年生物制藥研發(fā)合作承攬合同
- 2025廣告雜志總代理合同
- 2025年印刷用品及器材合作協(xié)議書
- 【9歷期末】安徽省淮北市2023-2024學(xué)年九年級上學(xué)期期末歷史試題
- 2024年度物流園區(qū)運(yùn)營承包合同范本3篇
- 第五單元第四節(jié) 全球發(fā)展與合作 教學(xué)實(shí)錄-2024-2025學(xué)年粵人版地理七年級上冊
- 期末綜合試卷(試題)2024-2025學(xué)年人教版數(shù)學(xué)五年級上冊(含答案)
- 投資控股合同
- 2024-2025學(xué)年上學(xué)期武漢小學(xué)語文六年級期末模擬試卷
- 廣東省廣州市越秀區(qū)2022-2023學(xué)年八年級上學(xué)期期末歷史試題(含答案)
- 2024年二級建造師繼續(xù)教育考核題及答案
- MOOC 計(jì)量經(jīng)濟(jì)學(xué)-西南財(cái)經(jīng)大學(xué) 中國大學(xué)慕課答案
- 陪診服務(wù)培訓(xùn)課件模板
- 房地產(chǎn)公司出納員年度工作總結(jié)
評論
0/150
提交評論