版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆云南省昆明市官渡區(qū)數(shù)學(xué)高二上期末檢測試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.直線的傾斜角是A. B.C. D.2.下列說法:①將一組數(shù)據(jù)中的每個數(shù)據(jù)都加上或減去同一個常數(shù)后,方差不變;②從統(tǒng)計量中得知有的把握認(rèn)為吸煙與患肺病有關(guān)系,是指有的可能性使得推斷出現(xiàn)錯誤;③回歸直線就是散點圖中經(jīng)過樣本數(shù)據(jù)點最多的那條直線;④如果兩個變量的線性相關(guān)程度越高,則線性相關(guān)系數(shù)就越接近于;其中錯誤說法的個數(shù)是()A. B.C. D.3.已知拋物線的焦點恰為雙曲線的一個頂點,的另一頂點為,與在第一象限內(nèi)的交點為,若,則直線的斜率為()A. B.C. D.4.已知雙曲線的左右焦點分別是和,點關(guān)于漸近線的對稱點恰好落在圓上,則雙曲線的離心率為()A. B.2C. D.35.第屆全運會于年月在陜西西安順利舉辦,其中水上項目在西安奧體中心游泳跳水館進行,為了應(yīng)對比賽,大會組委會將對泳池進行檢修,已知泳池深度為,其容積為,如果池底每平方米的維修費用為元,設(shè)入水處的較短池壁長度為,且據(jù)估計較短的池壁維修費用與池壁長度成正比,且比例系數(shù)為,較長的池壁維修費用滿足代數(shù)式,則當(dāng)泳池的維修費用最低時值為()A. B.C. D.6.若數(shù)列滿足,則的值為()A.2 B.C. D.7.在空間中,“直線與沒有公共點”是“直線與異面”的()A.必要不充分條件 B.充要條件C.充分不必要條件 D.既不充分也不必要條件8.某幾何體的三視圖如圖所示,則該幾何體的體積為A.54 B.45C.27 D.819.已知點在拋物線的準(zhǔn)線上,則該拋物線的焦點坐標(biāo)是()A. B.C. D.10.已知向量,,則等于()A. B.C. D.11.圓與圓的位置關(guān)系是()A.外離 B.外切C.相交 D.內(nèi)切12.函數(shù)的圖象如圖所示,則函數(shù)的圖象可能是A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線與直線交于D,E兩點,若(點O為坐標(biāo)原點)的面積為16,則拋物線的方程為______;過焦點F的直線l與拋物線交于A,B兩點,則______14.一個高為2的圓柱,底面周長為2,該圓柱的表面積為.15.已知雙曲線的一條漸近線被圓所截得的弦長為2,則雙曲線的離心率為___________.16.如圖直線過點,且與直線和分別相交于,兩點.(1)求過與交點,且與直線垂直的直線方程;(2)若線段恰被點平分,求直線的方程.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)函數(shù)(1)求函數(shù)的單調(diào)區(qū)間;(2)若有兩個零點,,求的取值范圍,并證明:18.(12分)一杯100℃的開水放在室溫25℃的房間里,1分鐘后水溫降到85℃,假設(shè)每分鐘水溫變化量和水溫與室溫之差成正比(1)分別求2分鐘,3分鐘后的水溫;(2)記n分鐘后的水溫為,證明:是等比數(shù)列,并求出的通項公式;(3)當(dāng)水溫在40℃到55℃之間時(包括40℃和55℃),為最適合飲用的溫度,則在水燒開后哪個時間段飲用最佳.(參考數(shù)據(jù):)19.(12分)已知橢圓的離心率為,短軸端點到焦點的距離為2(1)求橢圓的方程;(2)設(shè)為橢圓上任意兩點,為坐標(biāo)原點,且以為直徑的圓經(jīng)過原點,求證:原點到直線的距離為定值,并求出該定值20.(12分)已知拋物線的焦點F,C上一點到焦點的距離為5(1)求C方程;(2)過F作直線l,交C于A,B兩點,若線段AB中點的縱坐標(biāo)為-1,求直線l的方程21.(12分)設(shè)函數(shù)(1)若,求函數(shù)的單調(diào)區(qū)間;(2)若函數(shù)有兩個不同的零點,求實數(shù)的取值范圍22.(10分)已知數(shù)列的前項和是,且,等差數(shù)列中,(1)求數(shù)列的通項公式;(2)定義:記,求數(shù)列的前20項和
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】由方程得到斜率,然后可得其傾斜角.【詳解】因為直線的斜率為所以其傾斜角為故選:D2、C【解析】根據(jù)統(tǒng)計的概念逐一判斷即可.【詳解】對于①,方差反映一組數(shù)據(jù)的波動大小,將一組數(shù)據(jù)中的每個數(shù)據(jù)都加上或減去同一個常數(shù)后,方差不變,①正確;對于②從統(tǒng)計量中得知有的把握認(rèn)為吸煙與患肺病有關(guān)系,是指有的可能性使得推斷出現(xiàn)錯誤;故②正確;對于③,線性回歸方程必過樣本中心點,回歸直線不一定就是散點圖中經(jīng)過樣本數(shù)據(jù)點最多的那條直線,也可能不過任何一個點;③不正確;對于④,如果兩個變量的線性相關(guān)程度越高,則線性相關(guān)系數(shù)就越接近于,不正確,應(yīng)為相關(guān)系數(shù)的絕對值就越接近于;綜上,其中錯誤的個數(shù)是;故選:C.3、D【解析】根據(jù)題意,列出的方程組,解得,再利用斜率公式即可求得結(jié)果.【詳解】因為拋物線的焦點,由題可知;又點在拋物線上,故可得;又,聯(lián)立方程組可得,整理得,解得(舍)或,此時,又,故直線的斜率為.故選:D.4、B【解析】首先求出F1到漸近線的距離,利用F1關(guān)于漸近線的對稱點恰落在圓上,可得直角三角形,利用勾股定理得到關(guān)于ac的齊次式,即可求出雙曲線的離心率【詳解】由題意可設(shè),則到漸近線的距離為.設(shè)關(guān)于漸近線的對稱點為M,F1M與漸近線交于A,∴MF1=2b,A為F1M的中點.又O是F1P的中點,∴OA∥F2M,∴為直角,所以△為直角三角形,由勾股定理得:,所以,所以,所以離心率故選:B.5、A【解析】根據(jù)題意得到泳池維修費用的的解析式,再利用導(dǎo)數(shù)求出最值即可【詳解】解:設(shè)泳池維修的總費用為元,則由題意得,則,令,解得,當(dāng)時,;當(dāng)時,,故當(dāng)時,有最小值因此,當(dāng)較短池壁為時,泳池的總維修費用最低故選A6、C【解析】通過列舉得到數(shù)列具有周期性,,所以.詳解】,同理可得:,可得,則.故選:C.7、A【解析】由于在空間中,若直線與沒有公共點,則直線與平行或異面,再根據(jù)充分、必要條件的概念判斷,即可得到結(jié)果.【詳解】在空間中,若直線與沒有公共點,則直線與平行或異面.故“直線與沒有公共點”是“直線與異面”的必要不充分條件.故選:A.8、B【解析】由三視圖可得該幾何體是由平行六面體切割掉一個三棱錐而成,直觀圖如圖所示,所以該幾何體的體積為故選B點睛:本題考查了組合體的體積,由三視圖還原出幾何體,由四棱柱的體積減去三棱錐的體積.9、C【解析】首先表示出拋物線的準(zhǔn)線,根據(jù)點在拋物線的準(zhǔn)線上,即可求出參數(shù),即可求出拋物線的焦點.【詳解】解:拋物線的準(zhǔn)線為因為在拋物線的準(zhǔn)線上故其焦點為故選:【點睛】本題考查拋物線的簡單幾何性質(zhì),屬于基礎(chǔ)題.10、C【解析】根據(jù)題意,結(jié)合空間向量的坐標(biāo)運算,即可求解.【詳解】由,,得,因此.故選:C.11、C【解析】利用圓心距與半徑的關(guān)系確定正確選項.【詳解】圓的圓心為,半徑為,圓的圓心為,半徑為,圓心距為,,所以兩圓相交.故選:C12、D【解析】原函數(shù)先減再增,再減再增,且位于增區(qū)間內(nèi),因此選D【名師點睛】本題主要考查導(dǎo)數(shù)圖象與原函數(shù)圖象的關(guān)系:若導(dǎo)函數(shù)圖象與軸的交點為,且圖象在兩側(cè)附近連續(xù)分布于軸上下方,則為原函數(shù)單調(diào)性的拐點,運用導(dǎo)數(shù)知識來討論函數(shù)單調(diào)性時,由導(dǎo)函數(shù)的正負(fù),得出原函數(shù)的單調(diào)區(qū)間二、填空題:本題共4小題,每小題5分,共20分。13、①.②.1【解析】利用的面積列方程,化簡求得的值,從而求得拋物線方程.將的斜率分成存在和不存在兩種情況進行分類討論,結(jié)合根與系數(shù)關(guān)系求得.【詳解】依題意可知,,所以,解得.所以拋物線方程為.焦點,當(dāng)直線的斜率不存在時,直線的方程為,,即,此時.當(dāng)直線的斜率存在且不為時,設(shè)直線的方程為,由消去并化簡得,,設(shè),則,結(jié)合拋物線的定義可知.故答案為:;14、6【解析】2r=2,r=1,S表=2rh+2r2=4+2=6.15、或2【解析】由圓的方程有圓心,半徑為,討論雙曲線的焦點分別在x或y軸上對應(yīng)的漸近線方程,根據(jù)已知及弦長與半徑、弦心距的幾何關(guān)系得到雙曲線參數(shù)的齊次方程,即可求離心率.【詳解】由題設(shè),圓的標(biāo)準(zhǔn)方程為,即圓心,半徑為,若雙曲線為時,漸近線為且,所以圓心到雙曲線漸近線的距離為,由弦長、弦心距、半徑的關(guān)系知:,故,得:,又,所以,故.若雙曲線為時,漸近線為且,所以圓心到雙曲線漸近線的距離為,由弦長、弦心距、半徑的關(guān)系知:,故,得:,又,所以,故.綜上,雙曲線的離心率為或2.故答案為:或2.16、(1);(2).【解析】本題考查直線方程的基本求法:垂直直線的求法、點關(guān)于點對稱、點在直線上的待定系數(shù)法【詳解】(1)由題可得交點,所以所求直線方程為,即;(2)設(shè)直線與直線相交于點,因為線段恰被點平分,所以直線與直線的交點的坐標(biāo)為將點,的坐標(biāo)分別代入,的方程,得方程組解得由點和點及兩點式,得直線的方程為,即【點睛】直線的考法主要以點的對稱和直線的平行與垂直為主.點關(guān)于點的對稱,點關(guān)于直線的對稱,直線關(guān)于直線的對稱,是重點考察內(nèi)容三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)答案見詳解(2),證明見解析【解析】(1)求導(dǎo)得,,分類討論參數(shù)a的范圍即可判斷單調(diào)區(qū)間;(2)設(shè),,聯(lián)立整理得,構(gòu)造得,構(gòu)造函數(shù),結(jié)合導(dǎo)數(shù)判斷單調(diào)性,進而得證.小問1詳解】由,,可得,當(dāng)時,,所以在上單調(diào)遞增;當(dāng)時,令,得,令,得所以在單調(diào)遞減,在單調(diào)遞增;【小問2詳解】證明:因為函數(shù)有兩個零點,由(1)得,此時的遞增區(qū)間為,遞減區(qū)間為,有極小值.所以,可得,所以.由(1)可得的極小值點為,則不妨設(shè).設(shè),,則則,即,整理得,所以,設(shè),則,所以在上單調(diào)遞減,所以,所以,即.18、(1)2分鐘的水溫為℃,3分鐘后的水溫℃;(2)證明見解析,,;(3)在水燒開后4到7分鐘飲用最佳.【解析】(1)根據(jù)給定條件設(shè)第n分鐘后的水溫為,探求出與的關(guān)系即可計算作答.(2)利用(1)的信息,列式變形、推導(dǎo)即可得證,進而求出的通項公式.(3)由(2)的結(jié)論列不等式,借助對數(shù)函數(shù)的性質(zhì)求解即得.【小問1詳解】設(shè)第n分鐘后的水溫為,正比例系數(shù)為k,記,依題意,,當(dāng)時,,則有,解得,因此,,即有,,所以2分鐘的水溫為℃,3分鐘后的水溫℃.小問2詳解】由(1)知,,時,,,則有,即,而,于是得是以為首項,為公比的等比數(shù)列,則有,即,所以是等比數(shù)列,的通項公式是,.【小問3詳解】由(2)及已知得:,即,整理得,兩邊取常用對數(shù)得:,而,解得,即,所以在水燒開后4到7分鐘飲用最佳.【點睛】思路點睛:涉及實際意義給出的數(shù)列問題,正確理解實際意義,列出關(guān)系式,再借助數(shù)列思想探求相鄰兩項間關(guān)系即可推理作答.19、(1)(2)證明見解析,定值為【解析】(1)根據(jù)題意得到,,得到橢圓方程.(2)考慮直線斜率存在和不存在兩種情況,聯(lián)立方程,根據(jù)韋達定理得到根與系數(shù)的關(guān)系,將題目轉(zhuǎn)化為,化簡得到,代入計算得到答案.【小問1詳解】橢圓的離心率為,短軸端點到焦點的距離為,故,,故橢圓方程為.【小問2詳解】當(dāng)直線斜率存在時,設(shè)直線方程為,,,則,即,,以為直徑的圓經(jīng)過原點,故,即,即,化簡整理得到:,原點到直線的距離為.當(dāng)直線斜率不存在時,為等腰直角三角形,設(shè),則,解得,即直線方程為,到原點的距離為.綜上所述:原點到直線的距離為定值.【點睛】本題考查了橢圓方程,橢圓中的定值問題,意在考查學(xué)生的計算能力,轉(zhuǎn)化能力和綜合應(yīng)用能力,其中將圓過原點轉(zhuǎn)化為是解題的關(guān)鍵.20、(1);(2).【解析】(1)由拋物線的定義,結(jié)合已知有求p,寫出拋物線方程.(2)由題意設(shè)直線l為,聯(lián)立拋物線方程,應(yīng)用韋達定理可得,由中點公式有,進而求k值,寫出直線方程.【詳解】(1)由題意知:拋物線的準(zhǔn)線為,則,可得,∴C的方程為.(2)由(1)知:,由題意知:直線l的斜率存在,令其方程為,∴聯(lián)立拋物線方程,得:,,若,則,而線段AB中點的縱坐標(biāo)為-1,∴,即,得,∴直線l的方程為.【點睛】關(guān)鍵點點睛:(1)利用拋物線定義求參數(shù),寫出拋物線方程;(2)由直線與拋物線相交,以及相交弦的中點坐標(biāo)值,應(yīng)用韋達定理、中點公式求直線斜率,并寫出直線方程.21、(1)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;(2).【解析】(1)求出,進而判斷函數(shù)的單調(diào)性,然后討論符號后可得函數(shù)的單調(diào)區(qū)間;(2)令,則有兩個不同的零點,利用導(dǎo)數(shù)討論的單調(diào)性并結(jié)合零點存在定理可得實數(shù)的取值范圍.【小問1詳解】當(dāng)時,,,記,則,所以在上單調(diào)遞增,又,所以當(dāng)時,;當(dāng)時,,所以單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為【小問2詳解】令,得,記,則,令得,列表得.x0↘極小值↗要使在上有兩個零點,則,所以且函數(shù)在和上各有一個零點當(dāng)時,,,,則,故上無零點,與函數(shù)在上有一個零點矛盾,故不滿足條件所以,又因為,所以考慮,設(shè),,則,則在上單調(diào)遞減,故當(dāng)時,,所以,且,因為,所以,由零點存在定理知在和上各有一個零點綜上可知,實數(shù)a的取值范圍為【點睛】方法點睛:利用導(dǎo)數(shù)研究零點問題:(1)確定零點的個數(shù)問題:可利用數(shù)形結(jié)合的辦法判斷交點個數(shù),如果函數(shù)較為復(fù)雜
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 醫(yī)院行政工作站協(xié)議書范文
- 2008年哈爾濱市中考化學(xué)試題及答案
- 游泳褲項目評價分析報告
- 清潔下水道用清潔制劑項目評價分析報告
- 電接觸器項目評價分析報告
- 監(jiān)視服務(wù)行業(yè)影響因素分析
- 照相板相關(guān)項目建議書
- 手搖爆米花鍋相關(guān)項目實施方案
- 混音器市場環(huán)境與對策分析
- 成都師范學(xué)院《國際商務(wù)單證理論與實務(wù)》2021-2022學(xué)年第一學(xué)期期末試卷
- 第三節(jié)創(chuàng)造有意義的人生
- SPSS生物統(tǒng)計分析示例1-基本統(tǒng)計分析
- 2024年上海城投水務(wù)集團有限公司招聘筆試參考題庫含答案解析
- 銀行法律基礎(chǔ)知識講座
- GB/T 2881-2023工業(yè)硅
- 【多旋翼無人機的組裝與調(diào)試分析6000字(論文)】
- 真石漆高空施工方案
- 弘揚愛國主義精神主題班會課件
- 危重孕產(chǎn)婦的救治及轉(zhuǎn)診
- 對數(shù)函數(shù)的圖象和性質(zhì)PPT
- 醫(yī)療信息安全與患者隱私保護
評論
0/150
提交評論