北京一零一中學(xué)2025屆高三數(shù)學(xué)第一學(xué)期期末調(diào)研試題含解析_第1頁(yè)
北京一零一中學(xué)2025屆高三數(shù)學(xué)第一學(xué)期期末調(diào)研試題含解析_第2頁(yè)
北京一零一中學(xué)2025屆高三數(shù)學(xué)第一學(xué)期期末調(diào)研試題含解析_第3頁(yè)
北京一零一中學(xué)2025屆高三數(shù)學(xué)第一學(xué)期期末調(diào)研試題含解析_第4頁(yè)
北京一零一中學(xué)2025屆高三數(shù)學(xué)第一學(xué)期期末調(diào)研試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

北京一零一中學(xué)2025屆高三數(shù)學(xué)第一學(xué)期期末調(diào)研試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.相傳黃帝時(shí)代,在制定樂律時(shí),用“三分損益”的方法得到不同的竹管,吹出不同的音調(diào).如圖的程序是與“三分損益”結(jié)合的計(jì)算過(guò)程,若輸入的的值為1,輸出的的值為()A. B. C. D.2.若,則的虛部是()A. B. C. D.3.將函數(shù)圖象上所有點(diǎn)向左平移個(gè)單位長(zhǎng)度后得到函數(shù)的圖象,如果在區(qū)間上單調(diào)遞減,那么實(shí)數(shù)的最大值為()A. B. C. D.4.已知雙曲線:的左右焦點(diǎn)分別為,,為雙曲線上一點(diǎn),為雙曲線C漸近線上一點(diǎn),,均位于第一象限,且,,則雙曲線的離心率為()A. B. C. D.5.在中,為邊上的中點(diǎn),且,則()A. B. C. D.6.設(shè)一個(gè)正三棱柱,每條棱長(zhǎng)都相等,一只螞蟻從上底面的某頂點(diǎn)出發(fā),每次只沿著棱爬行并爬到另一個(gè)頂點(diǎn),算一次爬行,若它選擇三個(gè)方向爬行的概率相等,若螞蟻爬行10次,仍然在上底面的概率為,則為()A. B.C. D.7.已知復(fù)數(shù)(為虛數(shù)單位)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)的坐標(biāo)是()A. B. C. D.8.若時(shí),,則的取值范圍為()A. B. C. D.9.設(shè)分別是雙曲線的左右焦點(diǎn)若雙曲線上存在點(diǎn),使,且,則雙曲線的離心率為()A. B.2 C. D.10.函數(shù)的大致圖象是A. B. C. D.11.中,角的對(duì)邊分別為,若,,,則的面積為()A. B. C. D.12.運(yùn)行如圖所示的程序框圖,若輸出的的值為99,則判斷框中可以填()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.四面體中,底面,,,則四面體的外接球的表面積為______14.過(guò)且斜率為的直線交拋物線于兩點(diǎn),為的焦點(diǎn)若的面積等于的面積的2倍,則的值為___________.15.現(xiàn)有一塊邊長(zhǎng)為a的正方形鐵片,鐵片的四角截去四個(gè)邊長(zhǎng)均為x的小正方形,然后做成一個(gè)無(wú)蓋方盒,該方盒容積的最大值是________.16.若x,y滿足,則的最小值為________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)設(shè)等比數(shù)列的前項(xiàng)和為,若(Ⅰ)求數(shù)列的通項(xiàng)公式;(Ⅱ)在和之間插入個(gè)實(shí)數(shù),使得這個(gè)數(shù)依次組成公差為的等差數(shù)列,設(shè)數(shù)列的前項(xiàng)和為,求證:.18.(12分)設(shè)函數(shù),,(Ⅰ)求曲線在點(diǎn)(1,0)處的切線方程;(Ⅱ)求函數(shù)在區(qū)間上的取值范圍.19.(12分)已知函數(shù)u(x)=xlnx,v(x)x﹣1,m∈R.(1)令m=2,求函數(shù)h(x)的單調(diào)區(qū)間;(2)令f(x)=u(x)﹣v(x),若函數(shù)f(x)恰有兩個(gè)極值點(diǎn)x1,x2,且滿足1e(e為自然對(duì)數(shù)的底數(shù))求x1?x2的最大值.20.(12分)已知的內(nèi)角、、的對(duì)邊分別為、、,滿足.有三個(gè)條件:①;②;③.其中三個(gè)條件中僅有兩個(gè)正確,請(qǐng)選出正確的條件完成下面兩個(gè)問題:(1)求;(2)設(shè)為邊上一點(diǎn),且,求的面積.21.(12分)已知函數(shù).(1)解關(guān)于的不等式;(2)若函數(shù)的圖象恒在直線的上方,求實(shí)數(shù)的取值范圍22.(10分)已知函數(shù),函數(shù).(Ⅰ)判斷函數(shù)的單調(diào)性;(Ⅱ)若時(shí),對(duì)任意,不等式恒成立,求實(shí)數(shù)的最小值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】

根據(jù)循環(huán)語(yǔ)句,輸入,執(zhí)行循環(huán)語(yǔ)句即可計(jì)算出結(jié)果.【詳解】輸入,由題意執(zhí)行循環(huán)結(jié)構(gòu)程序框圖,可得:第次循環(huán):,,不滿足判斷條件;第次循環(huán):,,不滿足判斷條件;第次循環(huán):,,滿足判斷條件;輸出結(jié)果.故選:【點(diǎn)睛】本題考查了循環(huán)語(yǔ)句的程序框圖,求輸出的結(jié)果,解答此類題目時(shí)結(jié)合循環(huán)的條件進(jìn)行計(jì)算,需要注意跳出循環(huán)的判定語(yǔ)句,本題較為基礎(chǔ).2、D【解析】

通過(guò)復(fù)數(shù)的乘除運(yùn)算法則化簡(jiǎn)求解復(fù)數(shù)為:的形式,即可得到復(fù)數(shù)的虛部.【詳解】由題可知,所以的虛部是1.故選:D.【點(diǎn)睛】本題考查復(fù)數(shù)的代數(shù)形式的混合運(yùn)算,復(fù)數(shù)的基本概念,屬于基礎(chǔ)題.3、B【解析】

根據(jù)條件先求出的解析式,結(jié)合三角函數(shù)的單調(diào)性進(jìn)行求解即可.【詳解】將函數(shù)圖象上所有點(diǎn)向左平移個(gè)單位長(zhǎng)度后得到函數(shù)的圖象,則,設(shè),則當(dāng)時(shí),,,即,要使在區(qū)間上單調(diào)遞減,則得,得,即實(shí)數(shù)的最大值為,故選:B.【點(diǎn)睛】本小題主要考查三角函數(shù)圖象變換,考查根據(jù)三角函數(shù)的單調(diào)性求參數(shù),屬于中檔題.4、D【解析】由雙曲線的方程的左右焦點(diǎn)分別為,為雙曲線上的一點(diǎn),為雙曲線的漸近線上的一點(diǎn),且都位于第一象限,且,可知為的三等分點(diǎn),且,點(diǎn)在直線上,并且,則,,設(shè),則,解得,即,代入雙曲線的方程可得,解得,故選D.點(diǎn)睛:本題考查了雙曲線的幾何性質(zhì),離心率的求法,考查了轉(zhuǎn)化思想以及運(yùn)算能力,雙曲線的離心率是雙曲線最重要的幾何性質(zhì),求雙曲線的離心率(或離心率的取值范圍),常見有兩種方法:①求出,代入公式;②只需要根據(jù)一個(gè)條件得到關(guān)于的齊次式,轉(zhuǎn)化為的齊次式,然后轉(zhuǎn)化為關(guān)于的方程(不等式),解方程(不等式),即可得(的取值范圍).5、A【解析】

由為邊上的中點(diǎn),表示出,然后用向量模的計(jì)算公式求模.【詳解】解:為邊上的中點(diǎn),,故選:A【點(diǎn)睛】在三角形中,考查中點(diǎn)向量公式和向量模的求法,是基礎(chǔ)題.6、D【解析】

由題意,設(shè)第次爬行后仍然在上底面的概率為.①若上一步在上面,再走一步要想不掉下去,只有兩條路,其概率為;②若上一步在下面,則第步不在上面的概率是.如果爬上來(lái),其概率是,兩種事件又是互斥的,可得,根據(jù)求數(shù)列的通項(xiàng)知識(shí)可得選項(xiàng).【詳解】由題意,設(shè)第次爬行后仍然在上底面的概率為.①若上一步在上面,再走一步要想不掉下去,只有兩條路,其概率為;②若上一步在下面,則第步不在上面的概率是.如果爬上來(lái),其概率是,兩種事件又是互斥的,∴,即,∴,∴數(shù)列是以為公比的等比數(shù)列,而,所以,∴當(dāng)時(shí),,故選:D.【點(diǎn)睛】本題考查幾何體中的概率問題,關(guān)鍵在于運(yùn)用遞推的知識(shí),得出相鄰的項(xiàng)的關(guān)系,這是常用的方法,屬于難度題.7、A【解析】

直接利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn),求得的坐標(biāo)得出答案.【詳解】解:,在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)的坐標(biāo)是.故選:A.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)的代數(shù)表示法及其幾何意義,屬于基礎(chǔ)題.8、D【解析】

由題得對(duì)恒成立,令,然后分別求出即可得的取值范圍.【詳解】由題得對(duì)恒成立,令,在單調(diào)遞減,且,在上單調(diào)遞增,在上單調(diào)遞減,,又在單調(diào)遞增,,的取值范圍為.故選:D【點(diǎn)睛】本題主要考查了不等式恒成立問題,導(dǎo)數(shù)的綜合應(yīng)用,考查了轉(zhuǎn)化與化歸的思想.求解不等式恒成立問題,可采用參變量分離法去求解.9、A【解析】

由及雙曲線定義得和(用表示),然后由余弦定理得出的齊次等式后可得離心率.【詳解】由題意∵,∴由雙曲線定義得,從而得,,在中,由余弦定理得,化簡(jiǎn)得.故選:A.【點(diǎn)睛】本題考查求雙曲線的離心率,解題關(guān)鍵是應(yīng)用雙曲線定義用表示出到兩焦點(diǎn)的距離,再由余弦定理得出的齊次式.10、A【解析】

利用函數(shù)的對(duì)稱性及函數(shù)值的符號(hào)即可作出判斷.【詳解】由題意可知函數(shù)為奇函數(shù),可排除B選項(xiàng);當(dāng)時(shí),,可排除D選項(xiàng);當(dāng)時(shí),,當(dāng)時(shí),,即,可排除C選項(xiàng),故選:A【點(diǎn)睛】本題考查了函數(shù)圖象的判斷,函數(shù)對(duì)稱性的應(yīng)用,屬于中檔題.11、A【解析】

先求出,由正弦定理求得,然后由面積公式計(jì)算.【詳解】由題意,.由得,.故選:A.【點(diǎn)睛】本題考查求三角形面積,考查正弦定理,同角間的三角函數(shù)關(guān)系,兩角和的正弦公式與誘導(dǎo)公式,解題時(shí)要根據(jù)已知求值要求確定解題思路,確定選用公式順序,以便正確快速求解.12、C【解析】

模擬執(zhí)行程序框圖,即可容易求得結(jié)果.【詳解】運(yùn)行該程序:第一次,,;第二次,,;第三次,,,…;第九十八次,,;第九十九次,,,此時(shí)要輸出的值為99.此時(shí).故選:C.【點(diǎn)睛】本題考查算法與程序框圖,考查推理論證能力以及化歸轉(zhuǎn)化思想,涉及判斷條件的選擇,屬基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由題意畫出圖形,補(bǔ)形為長(zhǎng)方體,求其對(duì)角線長(zhǎng),可得四面體外接球的半徑,則表面積可求.【詳解】解:如圖,在四面體中,底面,,,可得,補(bǔ)形為長(zhǎng)方體,則過(guò)一個(gè)頂點(diǎn)的三條棱長(zhǎng)分別為1,1,,則長(zhǎng)方體的對(duì)角線長(zhǎng)為,則三棱錐的外接球的半徑為1.其表面積為.故答案為:.【點(diǎn)睛】本題考查多面體外接球表面積的求法,補(bǔ)形是關(guān)鍵,屬于中檔題.14、2【解析】

聯(lián)立直線與拋物線的方程,根據(jù)一元二次方程的根與系數(shù)的關(guān)系以及面積關(guān)系求解即可.【詳解】如圖,設(shè),由,則,由可得,由,則,所以,得.故答案為:2【點(diǎn)睛】此題考查了拋物線的性質(zhì),屬于中檔題.15、【解析】

由題意容積,求導(dǎo)研究單調(diào)性,分析即得解.【詳解】由題意:容積,,則,由得或(舍去),令則為V在定義域內(nèi)唯一的極大值點(diǎn)也是最大值點(diǎn),此時(shí).故答案為:【點(diǎn)睛】本題考查了導(dǎo)數(shù)在實(shí)際問題中的應(yīng)用,考查了學(xué)生數(shù)學(xué)建模,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.16、5【解析】

先作出可行域,再做直線,平移,找到使直線在y軸上截距最小的點(diǎn),代入即得?!驹斀狻孔鞒霾坏仁浇M表示的平面區(qū)域,如圖,令,則,作出直線,平移直線,由圖可得,當(dāng)直線經(jīng)過(guò)C點(diǎn)時(shí),直線在y軸上的截距最小,由,可得,因此的最小值為.故答案為:4【點(diǎn)睛】本題考查不含參數(shù)的線性規(guī)劃問題,是基礎(chǔ)題。三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(Ⅰ);(Ⅱ)詳見解析.【解析】

(Ⅰ),,兩式相減化簡(jiǎn)整理利用等比數(shù)列的通項(xiàng)公式即可得出.(Ⅱ)由題設(shè)可得,可得,利用錯(cuò)位相減法即可得出.【詳解】解:(Ⅰ)因?yàn)椋?,兩式相減可得,,故,因?yàn)槭堑缺葦?shù)列,∴,又,所以,故,所以;(Ⅱ)由題設(shè)可得,所以,所以,①則,②①-②得:,所以,得證.【點(diǎn)睛】本題考查了數(shù)列遞推關(guān)系、等比數(shù)列的通項(xiàng)公式求和公式、錯(cuò)位相減法,考查了推理能力與計(jì)算能力,屬于中檔題.18、(1)(2)【解析】分析:(1)先斷定在曲線上,從而需要求,令,求得結(jié)果,注意復(fù)合函數(shù)求導(dǎo)法則,接著應(yīng)用點(diǎn)斜式寫出直線的方程;(2)先將函數(shù)解析式求出,之后借助于導(dǎo)數(shù)研究函數(shù)的單調(diào)性,從而求得函數(shù)在相應(yīng)區(qū)間上的最值.詳解:(Ⅰ)當(dāng),.,當(dāng),,所以切線方程為.(Ⅱ),,因?yàn)?,所?令,,則在單調(diào)遞減,因?yàn)?,所以在上增,在單調(diào)遞增.,,因?yàn)?,所以在區(qū)間上的值域?yàn)?點(diǎn)睛:該題考查的是有關(guān)應(yīng)用導(dǎo)數(shù)研究函數(shù)的問題,涉及到的知識(shí)點(diǎn)有導(dǎo)數(shù)的幾何意義,曲線在某個(gè)點(diǎn)處的切線方程的求法,復(fù)合函數(shù)求導(dǎo),函數(shù)在給定區(qū)間上的最值等,在解題的過(guò)程中,需要對(duì)公式的正確使用.19、(1)單調(diào)遞增區(qū)間是(0,e),單調(diào)遞減區(qū)間是(e,+∞)(2)【解析】

(1)化簡(jiǎn)函數(shù)h(x),求導(dǎo),根據(jù)導(dǎo)數(shù)和函數(shù)的單調(diào)性的關(guān)系即可求出(2)函數(shù)f(x)恰有兩個(gè)極值點(diǎn)x1,x2,則f′(x)=lnx﹣mx=0有兩個(gè)正根,由此得到m(x2﹣x1)=lnx2﹣lnx1,m(x2+x1)=lnx2+lnx1,消參數(shù)m化簡(jiǎn)整理可得ln(x1x2)=ln?,設(shè)t,構(gòu)造函數(shù)g(t)=()lnt,利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,求出函數(shù)的最大值即可求出x1?x2的最大值.【詳解】(1)令m=2,函數(shù)h(x),∴h′(x),令h′(x)=0,解得x=e,∴當(dāng)x∈(0,e)時(shí),h′(x)>0,當(dāng)x∈(e,+∞)時(shí),h′(x)<0,∴函數(shù)h(x)單調(diào)遞增區(qū)間是(0,e),單調(diào)遞減區(qū)間是(e,+∞)(2)f(x)=u(x)﹣v(x)=xlnxx+1,∴f′(x)=1+lnx﹣mx﹣1=lnx﹣mx,∵函數(shù)f(x)恰有兩個(gè)極值點(diǎn)x1,x2,∴f′(x)=lnx﹣mx=0有兩個(gè)不等正根,∴l(xiāng)nx1﹣mx1=0,lnx2﹣mx2=0,兩式相減可得lnx2﹣lnx1=m(x2﹣x1),兩式相加可得m(x2+x1)=lnx2+lnx1,∴∴l(xiāng)n(x1x2)=ln?,設(shè)t,∵1e,∴1<t≤e,設(shè)g(t)=()lnt,∴g′(t),令φ(t)=t2﹣1﹣2tlnt,∴φ′(t)=2t﹣2(1+lnt)=2(t﹣1﹣lnt),再令p(t)=t﹣1﹣lnt,∴p′(t)=10恒成立,∴p(t)在(1,e]單調(diào)遞增,∴φ′(t)=p(t)>p(1)=1﹣1﹣ln1=0,∴φ(t)在(1,e]單調(diào)遞增,∴g′(t)=φ(t)>φ(1)=1﹣1﹣2ln1=0,∴g(t)在(1,e]單調(diào)遞增,∴g(t)max=g(e),∴l(xiāng)n(x1x2),∴x1x2故x1?x2的最大值為.【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)求函數(shù)的最值和最值,考查了函數(shù)與方程的思想,轉(zhuǎn)化與化歸思想,屬于難題20、(1);(2).【解析】

(1)先求出角,進(jìn)而可得出,則①②中有且只有一個(gè)正確,③正確,然后分①③正確和②③正確兩種情況討論,結(jié)合三角形的面積公式和余弦定理可求得的值;(2)計(jì)算出和,計(jì)算出,可得出,進(jìn)而可求得的面積.【詳解】(1)因?yàn)椋?,得,,,為鈍角,與矛盾,故①

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論