版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2025屆山東省臨沂市某重點中學數(shù)學高三第一學期期末統(tǒng)考模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.定義在上函數(shù)滿足,且對任意的不相等的實數(shù)有成立,若關于x的不等式在上恒成立,則實數(shù)m的取值范圍是()A. B. C. D.2.已知復數(shù),則()A. B. C. D.23.函數(shù)在的圖象大致為()A. B.C. D.4.對于函數(shù),若滿足,則稱為函數(shù)的一對“線性對稱點”.若實數(shù)與和與為函數(shù)的兩對“線性對稱點”,則的最大值為()A. B. C. D.5.一艘海輪從A處出發(fā),以每小時24海里的速度沿南偏東40°的方向直線航行,30分鐘后到達B處,在C處有一座燈塔,海輪在A處觀察燈塔,其方向是南偏東70°,在B處觀察燈塔,其方向是北偏東65°,那么B,C兩點間的距離是()A.6海里 B.6海里 C.8海里 D.8海里6.關于函數(shù),有下列三個結(jié)論:①是的一個周期;②在上單調(diào)遞增;③的值域為.則上述結(jié)論中,正確的個數(shù)為()A. B. C. D.7.已知斜率為k的直線l與拋物線交于A,B兩點,線段AB的中點為,則斜率k的取值范圍是()A. B. C. D.8.已知,則()A.5 B. C.13 D.9.已知向量,,且與的夾角為,則x=()A.-2 B.2 C.1 D.-110.點是單位圓上不同的三點,線段與線段交于圓內(nèi)一點M,若,則的最小值為()A. B. C. D.11.已知集合,集合,則A. B.或C. D.12.已知曲線且過定點,若且,則的最小值為().A. B.9 C.5 D.二、填空題:本題共4小題,每小題5分,共20分。13.已知直角坐標系中起點為坐標原點的向量滿足,且,,,存在,對于任意的實數(shù),不等式,則實數(shù)的取值范圍是______.14.函數(shù)的定義域是____________.(寫成區(qū)間的形式)15.已知等比數(shù)列的各項都是正數(shù),且成等差數(shù)列,則=__________.16.已知函數(shù)圖象上一點處的切線方程為,則_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某市環(huán)保部門對該市市民進行了一次垃圾分類知識的網(wǎng)絡問卷調(diào)查,每位市民僅有一次參加機會,通過隨機抽樣,得到參與問卷調(diào)查的100人的得分(滿分:100分)數(shù)據(jù),統(tǒng)計結(jié)果如表所示:組別男235151812女051010713(1)若規(guī)定問卷得分不低于70分的市民稱為“環(huán)保關注者”,請完成答題卡中的列聯(lián)表,并判斷能否在犯錯誤概率不超過0.05的前提下,認為是否為“環(huán)保關注者”與性別有關?(2)若問卷得分不低于80分的人稱為“環(huán)保達人”.視頻率為概率.①在我市所有“環(huán)保達人”中,隨機抽取3人,求抽取的3人中,既有男“環(huán)保達人”又有女“環(huán)保達人”的概率;②為了鼓勵市民關注環(huán)保,針對此次的調(diào)查制定了如下獎勵方案:“環(huán)保達人”獲得兩次抽獎活動;其他參與的市民獲得一次抽獎活動.每次抽獎獲得紅包的金額和對應的概率.如下表:紅包金額(單位:元)1020概率現(xiàn)某市民要參加此次問卷調(diào)查,記(單位:元)為該市民參加間卷調(diào)查獲得的紅包金額,求的分布列及數(shù)學期望.附表及公式:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82818.(12分)如圖,在正四棱錐中,,點、分別在線段、上,.(1)若,求證:⊥;(2)若二面角的大小為,求線段的長.19.(12分)已知等差數(shù)列滿足,.(l)求等差數(shù)列的通項公式;(2)設,求數(shù)列的前項和.20.(12分)在中,角A、B、C的對邊分別為a、b、c,且.(1)求角A的大??;(2)若,的平分線與交于點D,與的外接圓交于點E(異于點A),,求的值.21.(12分)已知拋物線的焦點為,點,點為拋物線上的動點.(1)若的最小值為,求實數(shù)的值;(2)設線段的中點為,其中為坐標原點,若,求的面積.22.(10分)在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)若,求曲線與的交點坐標;(2)過曲線上任意一點作與夾角為45°的直線,交于點,且的最大值為,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
結(jié)合題意可知是偶函數(shù),且在單調(diào)遞減,化簡題目所給式子,建立不等式,結(jié)合導函數(shù)與原函數(shù)的單調(diào)性關系,構(gòu)造新函數(shù),計算最值,即可.【詳解】結(jié)合題意可知為偶函數(shù),且在單調(diào)遞減,故可以轉(zhuǎn)換為對應于恒成立,即即對恒成立即對恒成立令,則上遞增,在上遞減,所以令,在上遞減所以.故,故選B.【點睛】本道題考查了函數(shù)的基本性質(zhì)和導函數(shù)與原函數(shù)單調(diào)性關系,計算范圍,可以轉(zhuǎn)化為函數(shù),結(jié)合導函數(shù),計算最值,即可得出答案.2、C【解析】
根據(jù)復數(shù)模的性質(zhì)即可求解.【詳解】,,故選:C【點睛】本題主要考查了復數(shù)模的性質(zhì),屬于容易題.3、B【解析】
先考慮奇偶性,再考慮特殊值,用排除法即可得到正確答案.【詳解】是奇函數(shù),排除C,D;,排除A.故選:B.【點睛】本題考查函數(shù)圖象的判斷,屬于??碱}.4、D【解析】
根據(jù)已知有,可得,只需求出的最小值,根據(jù),利用基本不等式,得到的最小值,即可得出結(jié)論.【詳解】依題意知,與為函數(shù)的“線性對稱點”,所以,故(當且僅當時取等號).又與為函數(shù)的“線性對稱點,所以,所以,從而的最大值為.故選:D.【點睛】本題以新定義為背景,考查指數(shù)函數(shù)的運算和圖像性質(zhì)、基本不等式,理解新定義含義,正確求出的表達式是解題的關鍵,屬于中檔題.5、A【解析】
先根據(jù)給的條件求出三角形ABC的三個內(nèi)角,再結(jié)合AB可求,應用正弦定理即可求解.【詳解】由題意可知:∠BAC=70°﹣40°=30°.∠ACD=110°,∴∠ACB=110°﹣65°=45°,∴∠ABC=180°﹣30°﹣45°=105°.又AB=24×0.5=12.在△ABC中,由正弦定理得,即,∴.故選:A.【點睛】本題考查正弦定理的實際應用,關鍵是將給的角度、線段長度轉(zhuǎn)化為三角形的邊角關系,利用正余弦定理求解.屬于中檔題.6、B【解析】
利用三角函數(shù)的性質(zhì),逐個判斷即可求出.【詳解】①因為,所以是的一個周期,①正確;②因為,,所以在上不單調(diào)遞增,②錯誤;③因為,所以是偶函數(shù),又是的一個周期,所以可以只考慮時,的值域.當時,,在上單調(diào)遞增,所以,的值域為,③錯誤;綜上,正確的個數(shù)只有一個,故選B.【點睛】本題主要考查三角函數(shù)的性質(zhì)應用.7、C【解析】
設,,,,設直線的方程為:,與拋物線方程聯(lián)立,由△得,利用韋達定理結(jié)合已知條件得,,代入上式即可求出的取值范圍.【詳解】設直線的方程為:,,,,,聯(lián)立方程,消去得:,△,,且,,,線段的中點為,,,,,,,,把代入,得,,,故選:【點睛】本題主要考查了直線與拋物線的位置關系,考查了韋達定理的應用,屬于中檔題.8、C【解析】
先化簡復數(shù),再求,最后求即可.【詳解】解:,,故選:C【點睛】考查復數(shù)的運算,是基礎題.9、B【解析】
由題意,代入解方程即可得解.【詳解】由題意,所以,且,解得.故選:B.【點睛】本題考查了利用向量的數(shù)量積求向量的夾角,屬于基礎題.10、D【解析】
由題意得,再利用基本不等式即可求解.【詳解】將平方得,(當且僅當時等號成立),,的最小值為,故選:D.【點睛】本題主要考查平面向量數(shù)量積的應用,考查基本不等式的應用,屬于中檔題.11、C【解析】
由可得,解得或,所以或,又,所以,故選C.12、A【解析】
根據(jù)指數(shù)型函數(shù)所過的定點,確定,再根據(jù)條件,利用基本不等式求的最小值.【詳解】定點為,,當且僅當時等號成立,即時取得最小值.故選:A【點睛】本題考查指數(shù)型函數(shù)的性質(zhì),以及基本不等式求最值,意在考查轉(zhuǎn)化與變形,基本計算能力,屬于基礎題型.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由題意可設,,,由向量的坐標運算,以及恒成立思想可設,的最小值即為點,到直線的距離,求得,可得不大于.【詳解】解:,且,可設,,,,可得,可得的終點均在直線上,由于為任意實數(shù),可得時,的最小值即為點到直線的距離,可得,對于任意的實數(shù),不等式,可得,故答案為:.【點睛】本題主要考查向量的模的求法,以及兩點的距離的運用,考查直線方程的運用,以及點到直線的距離,考查運算能力,屬于中檔題.14、【解析】
要使函數(shù)有意義,需滿足,即,解得,故函數(shù)的定義域是.15、【解析】
根據(jù)等差中項性質(zhì),結(jié)合等比數(shù)列通項公式即可求得公比;代入表達式,結(jié)合對數(shù)式的化簡即可求解.【詳解】等比數(shù)列的各項都是正數(shù),且成等差數(shù)列,則,由等比數(shù)列通項公式可知,所以,解得或(舍),所以由對數(shù)式運算性質(zhì)可得,故答案為:.【點睛】本題考查了等差數(shù)列通項公式的簡單應用,等比數(shù)列通項公式的用法,對數(shù)式的化簡運算,屬于中檔題.16、1【解析】
求出導函數(shù),由切線方程得切線斜率和切點坐標,從而可求得.【詳解】由題意,∵函數(shù)圖象在點處的切線方程為,∴,解得,∴.故答案為:1.【點睛】本題考查導數(shù)的幾何意義,求出導函數(shù)是解題基礎,三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)不能;(2)①;②分布列見解析,.【解析】
(1)根據(jù)題目所給的數(shù)據(jù)可求2×2列聯(lián)表即可;計算K的觀測值K2,對照題目中的表格,得出統(tǒng)計結(jié)論.(2)由相互獨立事件的概率可得男“環(huán)保達人”又有女“環(huán)保達人”的概率:P=1﹣()3﹣()3,解出X的分布列及數(shù)學期望E(X)即可;【詳解】(1)由圖中表格可得列聯(lián)表如下:非“環(huán)保關注者”是“環(huán)保關注者”合計男104555女153045合計2575100將列聯(lián)表中的數(shù)據(jù)代入公式計算得K”的觀測值,所以在犯錯誤的概率不超過0.05的前提下,不能認為是否為“環(huán)保關注者”與性別有關.(2)視頻率為概率,用戶為男“環(huán)保達人”的概率為.為女“環(huán)保達人”的概率為,①抽取的3名用戶中既有男“環(huán)保達人”又有女“環(huán)保達人”的概率為;②的取值為10,20,30,40.,,,,所以的分布列為10203040.【點睛】本題考查了獨立性檢驗的應用問題,考查了概率分布列和期望,計算能力的應用問題,是中檔題目.18、(1)證明見解析;(2).【解析】試題分析:由于圖形是正四棱錐,因此設AC、BD交點為O,則以OA為x軸正方向,以OB為y軸正方向,OP為z軸正方向建立空間直角坐標系,可用空間向量法解決問題.(1)只要證明=0即可證明垂直;(2)設=λ,得M(λ,0,1-λ),然后求出平面MBD的法向量,而平面ABD的法向量為,利用法向量夾角與二面角相等或互補可求得.試題解析:(1)連結(jié)AC、BD交于點O,以OA為x軸正方向,以OB為y軸正方向,OP為z軸正方向建立空間直角坐標系.因為PA=AB=,則A(1,0,0),B(0,1,0),D(0,-1,0),P(0,0,1).由=,得N,由=,得M,所以,=(-1,-1,0).因為=0,所以MN⊥AD(2)解:因為M在PA上,可設=λ,得M(λ,0,1-λ).所以=(λ,-1,1-λ),=(0,-2,0).設平面MBD的法向量=(x,y,z),由,得其中一組解為x=λ-1,y=0,z=λ,所以可取=(λ-1,0,λ).因為平面ABD的法向量為=(0,0,1),所以cos=,即=,解得λ=,從而M,N,所以MN==.考點:用空間向量法證垂直、求二面角.19、(1);(2).【解析】試題分析:(1)設等差數(shù)列滿的首項為,公差為,代入兩等式可解。(2)由(1),代入得,所以通過裂項求和可求得。試題解析:(1)設等差數(shù)列的公差為,則由題意可得,解得.所以.(2)因為,所以.所以.20、(1);(2)【解析】
(1)由,利用正弦定理轉(zhuǎn)化整理為,再利用余弦定理求解.(2)根據(jù),利用兩角和的余弦得到,利用數(shù)形結(jié)合,設,在中,由正弦定理求得,在中,求得再求解.【詳解】(1)因為,所以,即,即,所以.(2)∵,.所以,從而.所以,.不妨設,O為外接圓圓心則AO=1,,.在中,由正弦定理知,有.即;在中,由,,從而.所以.【點睛】本題主要考查平面向量的模的幾何意義,還考查了數(shù)形結(jié)合的方法,屬于中檔題.21、(1)的值為或.(2)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 福建師范大學《中學語文基礎名篇選講》2023-2024學年第一學期期末試卷
- 2024年二級建造師實務集訓模擬題二
- 福建師范大學《數(shù)字電路與系統(tǒng)設計基礎》2023-2024學年第一學期期末試卷
- 福建師范大學《環(huán)境工程實驗》2022-2023學年第一學期期末試卷
- 福建師范大學《大眾文化傳播》2023-2024學年第一學期期末試卷
- 橙藍幾何體扁平漸變簡約風電商直播行業(yè)發(fā)展分析報告
- 規(guī)范學習考試題目 管道考試
- 特色班線描畫學期教學計劃
- 小班幼兒作品分析
- 2024年銀川客運上崗證考什么內(nèi)容
- 駕駛員技能比武方案
- 赫茲伯格雙因素理論(正式版)課件
- 合同的權(quán)益和權(quán)力轉(zhuǎn)移
- 神經(jīng)外科手術(shù)治療頸椎病的研究現(xiàn)狀
- 2023水利系統(tǒng)職稱考試題庫及答案
- 中藥調(diào)劑員知識競賽考試題庫(附答案)
- LY/T 3354-2023土地退化類型與分級規(guī)范
- 北京市商業(yè)地產(chǎn)市場細分研究
- 新媒體視覺設計之新媒體視覺設計基本要素
- 《大衛(wèi)科波菲爾(節(jié)選)》《老人與?!仿?lián)讀課件17張高中語文選擇性必修上冊
- HSK五級必過考前輔導課件
評論
0/150
提交評論