版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆吉林省長春市榆樹市高二數(shù)學第一學期期末質(zhì)量跟蹤監(jiān)視試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.下列直線中,傾斜角最大的為()A. B.C. D.2.已知雙曲線:的左、右焦點分別為,,且,點是的右支上一點,且,,則雙曲線的方程為()A. B.C. D.3.已知橢圓的左焦點為,右頂點為,點在橢圓上,且軸,直線交軸于點.若,則橢圓的離心率是A. B.C. D.4.在數(shù)列中,若,,則()A.16 B.32C.64 D.1285.若數(shù)列對任意滿足,下面選項中關(guān)于數(shù)列的說法正確的是()A.一定是等差數(shù)列B.一定是等比數(shù)列C.可以既是等差數(shù)列又是等比數(shù)列D.可以既不是等差數(shù)列又不是等比數(shù)列6.已知數(shù)列滿足,令是數(shù)列的前n項積,,現(xiàn)給出下列四個結(jié)論:①;②為單調(diào)遞增的等比數(shù)列;③當時,取得最大值;④當時,取得最大值其中所有正確結(jié)論的編號為()A.②④ B.①③C.②③④ D.①③④7.如圖,、分別為橢圓的左、右焦點,為橢圓上的點,是線段上靠近的三等分點,為正三角形,則橢圓的離心率為()A. B.C. D.8.平面上動點到點的距離與它到直線的距離之比為,則動點的軌跡是()A.雙曲線 B.拋物線C.橢圓 D.圓9.設(shè)等差數(shù)列,的前n項和分別是,若,則()A. B.C. D.10.命題“若α=,則tanα=1”的逆否命題是A.若α≠,則tanα≠1 B.若α=,則tanα≠1C.若tanα≠1,則α≠ D.若tanα≠1,則α=11.設(shè)是等比數(shù)列,則“對于任意的正整數(shù)n,都有”是“是嚴格遞增數(shù)列”()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件12.已知數(shù)列滿足且,則()A.是等差數(shù)列 B.是等比數(shù)列C.是等比數(shù)列 D.是等比數(shù)列二、填空題:本題共4小題,每小題5分,共20分。13.圓上的點到直線的距離的最大值為__________.14.以下數(shù)據(jù)為某校參加數(shù)學競賽的名同學的成績:,,,,,,,,,,,,,,,,,,,.則這人成績的第百分位數(shù)可以是______15.已知橢圓()中,成等比數(shù)列,則橢圓的離心率為_______.16.已知數(shù)列滿足,,則數(shù)列的前n項和______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分){}是公差為1的等差數(shù)列,.正項數(shù)列{}的前n項和為,且.(1)求數(shù)列{}和數(shù)列}的通項公式;(2)在和之間插入1個數(shù),使,,成等差數(shù)列,在和之間插入2個數(shù),,使,,,成等差數(shù)列,…,在和之間插入n個數(shù),,…,,使,,,…,,成等差數(shù)列.①記,求{}的通項公式;②求的值.18.(12分)如圖,在四棱錐中,四邊形ABCD為正方形,PA⊥底面ABCD,,M,N分別為AB和PC的中點(1)求證:MN//平面PAD;(2)求平面MND與平面PAD的夾角的余弦值19.(12分)已知函數(shù),.(1)當時,求函數(shù)的極值;(2)若存在,使不等式成立,求實數(shù)的取值范圍.20.(12分)如圖,在棱長為3的正方體中,分別是上的點且(1)求證:;(2)求平面與平面的夾角的余弦值21.(12分)已知數(shù)列的通項公式為:,其中.記為數(shù)列的前項和(1)求,;(2)數(shù)列的通項公式為,求的前項和22.(10分)如圖,扇形AOB的半徑為2,圓心角,點C為弧AB上一點,平面AOB且,點且,面MOC(1)求證:平面平面POB;(2)求平面POA與平面MOC所成二面角的正弦值的大小
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】首先分別求直線的斜率,再結(jié)合直線傾斜角與斜率的關(guān)系,即可判斷選項.【詳解】A.直線的斜率;B.直線的斜率;C.直線的斜率;D.直線的斜率,因為,結(jié)合直線的斜率與傾斜角的關(guān)系,可知直線的傾斜角最大.故選:D2、B【解析】畫出圖形,利用已知條件轉(zhuǎn)化求解,關(guān)系,利用,解得,即可得到雙曲線的方程【詳解】由題意雙曲線的圖形如圖,連接與軸交于點,設(shè),,因為,所以,因為,所以,則,因為點是的右支上一點,所以,所以,則,因為,所以,,由勾股定理可得:,即,解得,則,所以雙曲線的方程為:故選:B3、D【解析】由于BF⊥x軸,故,設(shè),由得,選D.考點:橢圓的簡單性質(zhì)4、C【解析】根據(jù)題意,為等比數(shù)列,用基本量求解即可.【詳解】因為,故是首項為2,公比為2的等比數(shù)列,故.故選:C5、D【解析】由已知可得或,結(jié)合等差數(shù)列和等比數(shù)列的定義,可得答案【詳解】由,得或,即或,若,則數(shù)列是等差數(shù)列,則B錯誤;若,當時,數(shù)列是等差數(shù)列,當時,數(shù)列是等比數(shù)列,則A錯誤數(shù)列是等差數(shù)列,也可以是等比數(shù)列;由,不能得到數(shù)列為非0常數(shù)列,則不可以既是等差又是等比數(shù)列,則C錯誤;可以既不是等差又不是等比數(shù)列,如1,3,5,10,20,,故D正確;故選:D6、B【解析】求出,即可判斷選項①正確;求出,即可選項②錯誤;求出,利用單調(diào)性即可判斷選項③正確;求出,即可判斷選項④錯誤,即得解.【詳解】解:因為,①所以,,②①②得,,整理得,又,滿足上式,所以,因為,所以數(shù)列為等差數(shù)列,公差為,所以,故①正確;,因為,故數(shù)列為等比數(shù)列,其中首項,公比為的等比數(shù)列,因為,,所以數(shù)列為遞減的等比數(shù)列,故②錯誤;,因為為單調(diào)遞增函數(shù),所以當最大時,有最大值,因為,所以時,最大,即時,取得最大值,故③正確;設(shè),由可得,,解得或,又因為,所以時,取得最大值,故④錯誤;故選:B7、D【解析】根據(jù)橢圓定義及正三角形的性質(zhì)可得到\,再在中運用余弦定理得到、的關(guān)系,進而求得橢圓的離心率【詳解】由橢圓的定義知,,則,因為正三角形,所以,在中,由余弦定理得,則,,故選:D【點睛】本題考查橢圓的離心率的求解,考查考生的邏輯推理能力及運算求解能力,屬于中等題.8、A【解析】設(shè)點,利用距離公式化簡可得出點的軌跡方程,即可得出動點的軌跡圖形.【詳解】設(shè)點,由題意可得,化簡可得,即,曲線為反比例函數(shù)圖象,故動點的軌跡是雙曲線.故選:A.9、C【解析】結(jié)合等差數(shù)列前項和公式求得正確答案.【詳解】依題意等差數(shù)列,的前n項和分別是,由于,故可設(shè),,當時,,,所以,所以.故選:C10、C【解析】因為“若,則”的逆否命題為“若,則”,所以“若α=,則tanα=1”的逆否命題是“若tanα≠1,則α≠”.【點評】本題考查了“若p,則q”形式的命題的逆命題、否命題與逆否命題,考查分析問題的能力.11、C【解析】根據(jù)嚴格遞增數(shù)列定義可判斷必要性,分類討論可判斷充分性.【詳解】若是嚴格遞增數(shù)列,顯然,所以“對于任意的正整數(shù)n,都有”是“是嚴格遞增數(shù)列”必要條件;對任意的正整數(shù)n都成立,所以中不可能同時含正項和負項,,即,或,即,當時,有,即,是嚴格遞增數(shù)列,當時,有,即,是嚴格遞增數(shù)列,所以“對于任意的正整數(shù)n,都有”是“是嚴格遞增數(shù)列”充分條件故選:C12、D【解析】由,化簡得,結(jié)合等比數(shù)列、等差數(shù)列的定義可求解.【詳解】由,可得,所以,又由,,所以是首項為,公比為2的等比數(shù)列,所以,,,,所以不是等差數(shù)列;不等于常數(shù),所以不是等比數(shù)列.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先求得圓心到直線的距離,結(jié)合圓上的點到直線的距離的最大值為,即可求解.【詳解】由題意,圓的圓心坐標為,半徑為,則圓心到直線的距離為,所以圓上的點到直線的距離的最大值為.故答案為:14、【解析】利用百分位數(shù)的求法直接求解即可.【詳解】解:將所給數(shù)據(jù)按照從小到大的順序排列:,,,,,,,,,,,,,,,,,,,.數(shù)據(jù)量,∵是整數(shù),∴故答案為:.15、【解析】根據(jù)成等比數(shù)列,可得,再根據(jù)的關(guān)系可得,然后結(jié)合的自身范圍解方程即可求出【詳解】∵成等比數(shù)列,∴,∴,∴,∴,又,∴故答案為:【點睛】本題主要考查橢圓的離心率的計算以及等比數(shù)列定義的應用,意在考查學生的數(shù)學運算能力,屬于基礎(chǔ)題16、【解析】先求出,利用裂項相消法求和.【詳解】因為數(shù)列滿足,,所以數(shù)列為公差d=2的等差數(shù)列,所以,所以所以.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),(2)①;②【解析】(1)利用等差數(shù)列的通項公式將展開化簡,求得首項,可得;根據(jù)遞推式,確定,再寫出,兩式相減可求得;(2)①根據(jù)等差數(shù)列的性質(zhì),采用倒序相加法求得結(jié)果;②根據(jù)數(shù)列的通項的特征,采用錯位相減法求和即可.【小問1詳解】設(shè)數(shù)列{}的公差為d,則d=1,由,即,可得,所以{}的通項公式為;由可知:當,得,當時,,兩式相減得;,即,所以{}是以為首項,為公比的等比數(shù)列,故.【小問2詳解】①,兩式相加,得所以;②,,兩式相減得:,故.18、(1)證明見解析;(2).【解析】(1)在平面中構(gòu)造與平行的直線,利用線線平行推證線面平行即可;(2)以為坐標原點建立空間直角坐標系,分別求得兩個平面的法向量,利用向量法即可求得兩個平面夾角的余弦值.【小問1詳解】取中點為,連接,如下所示:因為為正方形,為中點,故可得//;在△中,因為分別為的中點,故可得//;故可得//,則四邊形為平行四邊形,即//,又面面,故//面.【小問2詳解】因為面面,故可得,又底面為正方形,故可得,則兩兩垂直;故以為坐標原點,以分別為軸建立空間直角坐標系如下所示:故可得,設(shè)平面的法向量為,又則,即,不妨取,則,則,取面的法向量為,故.設(shè)平面的夾角為,故可得,即平面MND與平面PAD的夾角的余弦值為.19、(1)函數(shù)在上遞增,在上遞減,極大值為,無極小值(2)【解析】(1)求出函數(shù)的導函數(shù),再根據(jù)導數(shù)的符號求得單調(diào)區(qū)間,再根據(jù)極值的定義即可得解;(2)若存在,使不等式成立,問題轉(zhuǎn)化為,令,,利用導數(shù)求出函數(shù)的最大值即可得出答案.【小問1詳解】解:當時,,則,當時,,當時,,所以函數(shù)在上遞增,在上遞減,所以函數(shù)的極大值為,無極小值;【小問2詳解】解:若存在,使不等式成立,則,即,則問題轉(zhuǎn)化為,令,,,當時,,當時,,所以函數(shù)在遞增,在上遞減,所以,所以.20、(1)證明見解析(2)【解析】(1)建立空間直角坐標系后得到相關(guān)向量,再運用數(shù)量積證明;(2)求出相關(guān)平面的法向量,再運用夾角公式計算即可.【小問1詳解】建立如下圖所示的空間直角坐標系:,,,,,∴,故.【小問2詳解】,,,設(shè)平面的一個法向量為,由,令,則,取平面的一個法向量為,設(shè)平面與平面夾角為,易知:為銳角,故,即平面與平面夾角的余弦值為.21、(1);;(2).【解析】(1)驗證可知數(shù)列是以為周期的周期數(shù)列,則,;(2)由(1)可求得,利用錯位相減法可求得結(jié)果.【小問1詳解】當時,;當時,;當時,;數(shù)列是以為周期的周期數(shù)列;,;【小問2詳解】由(1)得:,,,,兩式作差得:.22、(1)證明見解析(2)【解析】(1)連接,設(shè)與相交于點,連接MN,利用余弦定理可求得,,的長度,進而得到,又,由此可得平面,最后利用面面垂直的判定定理即可得證;(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版班班通設(shè)備與物聯(lián)網(wǎng)結(jié)合合同2篇
- 二零二五年綠色生態(tài)住宅小區(qū)消防工程設(shè)計與施工合同3篇
- 二零二五版股份制企業(yè)股份自愿轉(zhuǎn)讓與投資者關(guān)系維護合同3篇
- 二零二五年度監(jiān)理合同延期補充協(xié)議-責任劃分與風險承擔3篇
- 二零二五版中央空調(diào)清洗保養(yǎng)及能耗管理服務合同3篇
- 二零二五年度國有資產(chǎn)管理委托服務合同2篇
- 二零二五版股票質(zhì)押擔保合同范本編制與解析3篇
- 二零二五年度風力發(fā)電項目融資合同2篇
- 二零二五年美發(fā)師國際交流聘用合同2篇
- 二零二五年度酒店地毯翻新與維護服務合同范本3篇
- 垃圾焚燒發(fā)電環(huán)保培訓
- 北京市朝陽區(qū)2024-2025學年高一(上)期末化學試卷(含答案)
- 中醫(yī)基礎(chǔ)學考試題(附答案)
- 2025貴州建筑安全員B證考試題庫附答案
- 2024年杭州師范大學附屬醫(yī)院高層次衛(wèi)技人才招聘筆試歷年參考題庫頻考點附帶答案
- 2024-2025學年八年級歷史上冊期末復習課件
- 2025年云南省大理州事業(yè)單位招聘339人歷年高頻重點提升(共500題)附帶答案詳解
- 2024-2025學年度第一學期三年級數(shù)學寒假作業(yè) 有答案
- 大型起重機械現(xiàn)場管理手冊
- 2024年貴州省公務員錄用考試《行測》真題及答案解析
- 江蘇省南京市聯(lián)合體2024-2025學年九年級上學期期中學情分析化學試卷(無答案)
評論
0/150
提交評論