版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆浙江安吉天略外國(guó)語(yǔ)學(xué)校數(shù)學(xué)高二上期末考試試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.北京天壇的圜丘壇為古代祭天的場(chǎng)所,分上、中、下三層,上層中心有一塊圓形石板(稱(chēng)為天心石),環(huán)繞天心石砌9塊扇面形石板構(gòu)成第一環(huán),向外每環(huán)依次增加9塊,下一層的第一環(huán)比上一層的最后一環(huán)多9塊,向外每環(huán)依次也增加9塊,已知每層環(huán)數(shù)相同,且下層比中層多729塊,則三層共有扇面形石板(不含天心石)()A.3699塊 B.3474塊C.3402塊 D.3339塊2.袋子中有四個(gè)小球,分別寫(xiě)有“文、明、中、國(guó)”四個(gè)字,有放回地從中任取一個(gè)小球,直到“中”“國(guó)”兩個(gè)字都取到就停止,用隨機(jī)模擬的方法估計(jì)恰好在第三次停止的概率.利用電腦隨機(jī)產(chǎn)生0到3之間取整數(shù)值的隨機(jī)數(shù),分別用0,1,2,3代表“文、明、中、國(guó)”這四個(gè)字,以每三個(gè)隨機(jī)數(shù)為一組,表示取球三次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了以下18組隨機(jī)數(shù):由此可以估計(jì),恰好第三次就停止的概率為()A. B.C. D.3.等差數(shù)列的通項(xiàng)公式,數(shù)列,其前項(xiàng)和為,則等于()A. B.C. D.4.已知拋物線:的焦點(diǎn)為,為上一點(diǎn)且在第一象限,以為圓心,為半徑的圓交的準(zhǔn)線于,兩點(diǎn),且,,三點(diǎn)共線,則()A.2 B.4C.6 D.85.已知圓的半徑為,平面上一定點(diǎn)到圓心的距離,是圓上任意一點(diǎn).線段的垂直平分線和直線相交于點(diǎn),設(shè)點(diǎn)在圓上運(yùn)動(dòng)時(shí),點(diǎn)的軌跡為,當(dāng)時(shí),軌跡對(duì)應(yīng)曲線的離心率取值范圍為()A. B.C. D.6.若某群體中的成員只用現(xiàn)金支付的概率為,既用現(xiàn)金支付也用非現(xiàn)金支付的概率為,則不用現(xiàn)金支付的概率為()A. B.C. D.7.已知圓O的半徑為5,,過(guò)點(diǎn)P的2021條弦的長(zhǎng)度組成一個(gè)等差數(shù)列,最短弦長(zhǎng)為,最長(zhǎng)弦長(zhǎng)為,則其公差為()A. B.C. D.8.某研究所為了研究近幾年中國(guó)留學(xué)生回國(guó)人數(shù)的情況,對(duì)2014至2018年留學(xué)生回國(guó)人數(shù)進(jìn)行了統(tǒng)計(jì),數(shù)據(jù)如下表:年份20142015201620172018年份代碼12345留學(xué)生回國(guó)人數(shù)/萬(wàn)36.540.943.348.151.9根據(jù)上述統(tǒng)計(jì)數(shù)據(jù)求得留學(xué)生回國(guó)人數(shù)(單位:萬(wàn))與年份代碼滿(mǎn)足的線性回歸方程為,利用回歸方程預(yù)測(cè)年留學(xué)生回國(guó)人數(shù)為()A.63.14萬(wàn) B.64.72萬(wàn)C.66.81萬(wàn) D.66.94萬(wàn)9.已知正實(shí)數(shù)a,b滿(mǎn)足,若不等式對(duì)任意的實(shí)數(shù)x恒成立,則實(shí)數(shù)m的取值范圍是()A. B.C. D.10.設(shè)橢圓()的左焦點(diǎn)為F,O為坐標(biāo)原點(diǎn).過(guò)點(diǎn)F且斜率為的直線與C的一個(gè)交點(diǎn)為Q(點(diǎn)Q在x軸上方),且,則C的離心率為()A. B.C. D.11.記Sn為等差數(shù)列{an}的前n項(xiàng)和,給出下列4個(gè)條件:①a1=1;②a4=4;③S3=9;④S5=25,若只有一個(gè)條件不成立,則該條件為()A.① B.②C.③ D.④12.圓心,半徑為的圓的方程是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在平行六面體中,底面是邊長(zhǎng)為1的正方形,的長(zhǎng)度為2,且,則的長(zhǎng)度為_(kāi)_______14.已知點(diǎn)為橢圓上的動(dòng)點(diǎn),為圓的任意一條直徑,則的最大值是__________15.已知一個(gè)圓錐的底面半徑為6,其體積為則該圓錐的側(cè)面積為_(kāi)_______.16.已知向量,向量,若,則實(shí)數(shù)的值為_(kāi)_______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)的內(nèi)角A,B,C的對(duì)邊分別為a,b,c.已知.(1)求B(2)___________,若問(wèn)題中的三角形存在,試求出;若問(wèn)題中的三角形不存在,請(qǐng)說(shuō)明理由.在①,②,③這三個(gè)條件中任選一個(gè),補(bǔ)充在橫線上.注:如果選擇多個(gè)條件分別解答,按第一個(gè)解答計(jì)分.18.(12分)已知函數(shù)(1)當(dāng)時(shí),求的單調(diào)區(qū)間與極值;(2)若不等式在區(qū)間上恒成立,求k的取值范圍19.(12分)設(shè)橢圓的焦距為,原點(diǎn)到經(jīng)過(guò)兩點(diǎn)的直線的距離為.(1)求橢圓的離心率;(2)如圖所示,是圓的一條直徑,若橢圓經(jīng)過(guò)兩點(diǎn),求橢圓的標(biāo)準(zhǔn)方程20.(12分)已知函數(shù)(Ⅰ)討論函數(shù)的極值點(diǎn)的個(gè)數(shù)(Ⅱ)若,,求的取值范圍21.(12分)如圖,OP為圓錐的高,AB為底面圓O的直徑,C為圓O上一點(diǎn),并且,E為劣弧上的一點(diǎn),且,.(1)若E為劣弧的中點(diǎn),求證:平面POE;(2)若E為劣弧的三等分點(diǎn)(靠近點(diǎn)),求平面PEO與平面PEB的夾角的余弦值.22.(10分)在平面直角坐標(biāo)系中,已知點(diǎn),,過(guò)點(diǎn)的動(dòng)直線與過(guò)點(diǎn)的動(dòng)直線的交點(diǎn)為P,,的斜率均存在且乘積為,設(shè)動(dòng)點(diǎn)Р的軌跡為曲線C.(1)求曲線C的方程;(2)若點(diǎn)M在曲線C上,過(guò)點(diǎn)M且垂直于OM的直線交C于另一點(diǎn)N,點(diǎn)M關(guān)于原點(diǎn)O的對(duì)稱(chēng)點(diǎn)為Q.直線NQ交x軸于點(diǎn)T,求的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】第n環(huán)天石心塊數(shù)為,第一層共有n環(huán),則是以9為首項(xiàng),9為公差的等差數(shù)列,設(shè)為的前n項(xiàng)和,由題意可得,解方程即可得到n,進(jìn)一步得到.【詳解】設(shè)第n環(huán)天石心塊數(shù)為,第一層共有n環(huán),則是以9為首項(xiàng),9為公差的等差數(shù)列,,設(shè)為的前n項(xiàng)和,則第一層、第二層、第三層的塊數(shù)分別為,因?yàn)橄聦颖戎袑佣?29塊,所以,即即,解得,所以.故選:C【點(diǎn)晴】本題主要考查等差數(shù)列前n項(xiàng)和有關(guān)的計(jì)算問(wèn)題,考查學(xué)生數(shù)學(xué)運(yùn)算能力,是一道容易題.2、A【解析】利用古典概型的概率公式求解.【詳解】因?yàn)殡S機(jī)模擬產(chǎn)生了以下18組隨機(jī)數(shù):,其中恰好第三次就停止包含的基本事件有:023,123,132共3個(gè),所以由此可以估計(jì),恰好第三次就停止的概率為,故選:A3、D【解析】根據(jù)裂項(xiàng)求和法求得,再計(jì)算即可.【詳解】解:由題意得====所以.故選:D4、B【解析】根據(jù),,三點(diǎn)共線,結(jié)合點(diǎn)到準(zhǔn)線的距離為2,得到,再利用拋物線的定義求解.【詳解】如圖所示:∵,,三點(diǎn)共線,∴是圓的直徑,∴,軸,又為的中點(diǎn),且點(diǎn)到準(zhǔn)線的距離為2,∴,由拋物線的定義可得,故選:B.5、D【解析】分點(diǎn)A在圓內(nèi),圓外兩種情況,根據(jù)中垂線的性質(zhì),結(jié)合橢圓、雙曲線的定義可判斷軌跡,再由離心率計(jì)算即可求解.【詳解】當(dāng)A在圓內(nèi)時(shí),如圖,,所以的軌跡是以O(shè),A為焦點(diǎn)的橢圓,其中,,此時(shí),,.當(dāng)A在圓外時(shí),如圖,因?yàn)椋攒壽E是以O(shè),A為焦點(diǎn)的雙曲線,其中,,此時(shí),,.綜上可知,.故選:D6、A【解析】利用對(duì)立事件概率公式可求得所求事件的概率.【詳解】由對(duì)立事件的概率公式可知,該群體中的成員不用現(xiàn)金支付的概率為.故選:A.7、B【解析】可得過(guò)點(diǎn)P的最長(zhǎng)弦長(zhǎng)為直徑,最短弦長(zhǎng)為過(guò)點(diǎn)P的與垂直的弦,分別求出即可得出公差.【詳解】可得過(guò)點(diǎn)P的最長(zhǎng)弦長(zhǎng)為直徑,,最短弦長(zhǎng)為過(guò)點(diǎn)P的與垂直的弦,,公差.故選:B.8、D【解析】先求出樣本點(diǎn)的中心,代入線性回歸方程即可求出,再將代入線性回歸方程即可得到結(jié)果【詳解】由題意知:,,所以樣本點(diǎn)的中心為,所以,解得:,可得線性回歸方程為,年對(duì)應(yīng)的年份代碼為,令,則,所以預(yù)測(cè)2022年留學(xué)生回國(guó)人數(shù)為66.94萬(wàn),故選:D.9、D【解析】利用基本不等式求出的最小值16,分離參數(shù)即可.【詳解】因?yàn)?,,,所以,?dāng)且僅當(dāng),即,時(shí)取等號(hào)由題意,得,即對(duì)任意的實(shí)數(shù)x恒成立,又,所以,即故選:D10、D【解析】連接Q和右焦點(diǎn),可知|OQ|=,可得∠FQ=90°,由得,寫(xiě)出兩直線方程,聯(lián)立可得Q點(diǎn)坐標(biāo),Q點(diǎn)坐標(biāo)代入橢圓標(biāo)準(zhǔn)方程可得a、b、c關(guān)系﹒【詳解】設(shè)橢圓右焦點(diǎn)為,連接Q,∵,,∴|OQ|=,∴∠FQ=90°,∵,∴,F(xiàn)Q過(guò)F(-c,0),Q過(guò)(c,0),則,由,∵Q在橢圓上,∴,又,解得,∴離心率故選:D11、B【解析】根據(jù)等差數(shù)列通項(xiàng)公式及求和公式的基本量計(jì)算,對(duì)比即可得出結(jié)果.【詳解】設(shè)等差數(shù)列{an}的公差為,,,,即,即.當(dāng),時(shí),①③④均成立,②不成立.故選:B12、D【解析】根據(jù)圓心坐標(biāo)及半徑,即可得到圓的方程.【詳解】因?yàn)閳A心為,半徑為,所以圓的方程為:.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設(shè)一組基地向量,將目標(biāo)用基地向量表示,然后根據(jù)向量的運(yùn)算法則運(yùn)算即可【詳解】設(shè),則有:則有:根據(jù),解得:故答案為:14、【解析】設(shè)點(diǎn),則且,計(jì)算得出,再利用二次函數(shù)的基本性質(zhì)即可求得的最大值.【詳解】解:圓的圓心為,半徑長(zhǎng)為,設(shè)點(diǎn),由點(diǎn)為橢圓上的動(dòng)點(diǎn),可得:且,由為圓的任意一條直徑可得:,,,,,當(dāng)時(shí),取得最大值,即.故答案為:.15、【解析】利用體積公式求出圓錐的高,進(jìn)一步求出母線長(zhǎng),最終利用側(cè)面積公式求出答案.【詳解】∵∴∴∴.故答案為:.16、2【解析】根據(jù),由求解.【詳解】因?yàn)橄蛄?,向量,且,所以,解得,故答案為?三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)答案見(jiàn)解析【解析】(1)由正弦定理及正弦的兩角和公式可求解;(2)選擇條件①,由正弦定理及輔助角公式可求解;選擇條件②,由余弦定理及正切三角函數(shù)可求解;選擇條件③,由余弦定理可求解.【小問(wèn)1詳解】由,可得,則.∴,在中,,則,∵,∴,∴,∵,∴.【小問(wèn)2詳解】選擇條件①,在中,,可得,∵,∴,∴,根據(jù)輔助角公式,可得,∵,∴,即,故選擇條件②由,得,∵,∴,因此,,整理得,即,則.在中,,∴.故.選擇條件③由,得,即,整理得,由于,則方程無(wú)解,故不存在這樣的三角形.18、(1)在上單調(diào)遞增,在上單調(diào)遞減,極大值為﹣1,無(wú)極小值(2)【解析】(1)利用導(dǎo)數(shù)求出單調(diào)區(qū)間,即可求出極值;(2)令,利用分離參數(shù)法得到,利用導(dǎo)數(shù)求出的最大值即可求解.【小問(wèn)1詳解】當(dāng)時(shí),,定義域?yàn)?,?dāng)時(shí),,單調(diào)遞增;當(dāng)時(shí),,單調(diào)遞減∴當(dāng)時(shí),取得極大值﹣1所以在上單調(diào)遞增,在上單調(diào)遞減極大值為﹣1,無(wú)極小值【小問(wèn)2詳解】由,得,令,只需.求導(dǎo)得,所以當(dāng)時(shí),,單調(diào)遞增,當(dāng)時(shí),,單調(diào)遞減,∴當(dāng)時(shí),取得最大值,∴k的取值范圍為19、(1)(2)【解析】(1)根據(jù)題意得,進(jìn)而求解離心率即可;(2)根據(jù)題意得圓心是線段的中點(diǎn),且,易知斜率存在,設(shè)其直線方程為,再結(jié)合韋達(dá)定理及弦長(zhǎng)公式求解即可.【小問(wèn)1詳解】解:過(guò)點(diǎn)的直線方程為,∴原點(diǎn)到直線的距離,由,得,解得離心率.【小問(wèn)2詳解】解:由(1)知,橢圓的方程為.依題意,圓心是線段的中點(diǎn),且.易知,不與軸垂直,設(shè)其直線方程,聯(lián)立,得.設(shè),則,.由,得,解得.所以.于是.由,得,解得.故橢圓的方程為.20、(Ⅰ)答案見(jiàn)解析;(Ⅱ).【解析】(Ⅰ)求得,分,和三種情況討論,求得函數(shù)的單調(diào)性,結(jié)合極值的概念,即可求解;(Ⅱ)由不等式,轉(zhuǎn)化為當(dāng)時(shí),不等式恒成立,設(shè),利用導(dǎo)數(shù)求得函數(shù)的單調(diào)性與最值,即可求解.【詳解】(Ⅰ)由題意,函數(shù)的定義域?yàn)?,且,?dāng)時(shí),令,解得,令,解得或,故在上單調(diào)遞減,在,上單調(diào)遞增,所以有一個(gè)極值點(diǎn);當(dāng)時(shí),令,解得或,令,得,故在,上單調(diào)遞減,在上單調(diào)遞增,所以有一個(gè)極值點(diǎn);當(dāng)時(shí),上單調(diào)遞增,在上單調(diào)遞減,所以沒(méi)有極值點(diǎn)綜上所述,當(dāng)時(shí),有個(gè)極值點(diǎn);當(dāng)時(shí),沒(méi)有極值點(diǎn).(Ⅱ)由,即,可得,即當(dāng)時(shí),不等式恒成立,設(shè),則設(shè),則因?yàn)?,所以,所以在上單調(diào)遞增,所以,所以在上單調(diào)遞減,在上單調(diào)遞增,所以,所以所以的取值范圍是.【點(diǎn)睛】對(duì)于利用導(dǎo)數(shù)研究不等式的恒成立問(wèn)題的求解策略:1、通常要構(gòu)造新函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求出最值,從而求出參數(shù)的取值范圍;2、利用可分離變量,構(gòu)造新函數(shù),直接把問(wèn)題轉(zhuǎn)化為函數(shù)的最值問(wèn)題3、根據(jù)恒成求解參數(shù)的取值時(shí),一般涉及分類(lèi)參數(shù)法,但壓軸試題中很少碰到分離參數(shù)后構(gòu)造的新函數(shù)能直接求出最值點(diǎn)的情況,通常要設(shè)出導(dǎo)數(shù)的零點(diǎn),難度較大.21、(1)證明見(jiàn)解析(2)【解析】(1)推導(dǎo)出平面,,,由此能證明平面(2)推導(dǎo)出,,以為原點(diǎn),為軸,為軸,為軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角的余弦值【小問(wèn)1詳解】證明:為圓錐的高,平面,又平面,,為劣弧的中點(diǎn),,,平面,平面【小問(wèn)2詳解】解:解:為劣弧的三等分點(diǎn)(靠近點(diǎn),為底面圓的直徑,為圓上一點(diǎn),并且,,以為原點(diǎn),為軸,為軸,為軸,建立空間直角坐標(biāo)系,,0,,,0,,,,,,0,,,3,,0,,,,,,,,,3,設(shè)平面的法向量,,,則,取,得
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 長(zhǎng)春金融高等專(zhuān)科學(xué)?!逗蜌馀璧爻练e學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 食品檢驗(yàn)取樣技術(shù)規(guī)程
- 保險(xiǎn)風(fēng)險(xiǎn)應(yīng)對(duì)策略模板
- IT部門(mén)年度工作報(bào)告模板
- 聲音科學(xué)詳解模板
- 生物技術(shù)基礎(chǔ)培訓(xùn)模板
- 問(wèn)卷調(diào)查報(bào)告格式
- 二零二五版商用鍋爐運(yùn)行安全保障合同范本3篇
- 統(tǒng)編版五年級(jí)語(yǔ)文上冊(cè)寒假作業(yè)(十)(有答案)
- 2024-2025學(xué)年天津市和平區(qū)高一上學(xué)期期末質(zhì)量調(diào)查數(shù)學(xué)試卷(含答案)
- 高中數(shù)學(xué)筆記總結(jié)高一至高三很全
- 《物理因子治療技術(shù)》期末考試復(fù)習(xí)題庫(kù)(含答案)
- 011(1)-《社會(huì)保險(xiǎn)人員減員申報(bào)表》
- 電廠C級(jí)檢修工藝流程
- 函授本科《小學(xué)教育》畢業(yè)論文范文
- 高考高中英語(yǔ)單詞詞根詞綴大全
- 江蘇省泰州市姜堰區(qū)2023年七年級(jí)下學(xué)期數(shù)學(xué)期末復(fù)習(xí)試卷【含答案】
- 藥用輔料聚乙二醇400特性、用法用量
- 《中小學(xué)機(jī)器人教育研究(論文)11000字》
- GB/T 22085.1-2008電子束及激光焊接接頭缺欠質(zhì)量分級(jí)指南第1部分:鋼
- 全過(guò)程人民民主學(xué)習(xí)心得體會(huì)
評(píng)論
0/150
提交評(píng)論