江蘇省宿遷市宿遷中學(xué)2025屆數(shù)學(xué)高二上期末調(diào)研模擬試題含解析_第1頁
江蘇省宿遷市宿遷中學(xué)2025屆數(shù)學(xué)高二上期末調(diào)研模擬試題含解析_第2頁
江蘇省宿遷市宿遷中學(xué)2025屆數(shù)學(xué)高二上期末調(diào)研模擬試題含解析_第3頁
江蘇省宿遷市宿遷中學(xué)2025屆數(shù)學(xué)高二上期末調(diào)研模擬試題含解析_第4頁
江蘇省宿遷市宿遷中學(xué)2025屆數(shù)學(xué)高二上期末調(diào)研模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

江蘇省宿遷市宿遷中學(xué)2025屆數(shù)學(xué)高二上期末調(diào)研模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某地政府為落實疫情防控常態(tài)化,不定時從當(dāng)?shù)?80名公務(wù)員中,采用系統(tǒng)抽樣的方法抽取30人做核酸檢測.把這批公務(wù)員按001到780進(jìn)行編號,若018號被抽中,則下列編號也被抽中的是()A.076 B.122C.390 D.5222.等比數(shù)列中,,,則()A. B.C. D.3.已知雙曲線的兩個焦點為,,是此雙曲線上的一點,且滿足,,則該雙曲線的方程是()A. B.C. D.4.若等差數(shù)列,其前n項和為,,,則()A.10 B.12C.14 D.165.已知數(shù)列的前項和為,當(dāng)時,()A.11 B.20C.33 D.356.已知數(shù)列為等差數(shù)列,若,則()A.1 B.2C.3 D.47.已知直線與直線平行,則實數(shù)a的值為()A.1 B.C.1或 D.8.設(shè),隨機(jī)變量X的分布列如下表所示,隨機(jī)變量Y滿足,則當(dāng)a在上增大時,關(guān)于的表述下列正確的是()X013PabA增大 B.減小C.先增大后減小 D.先減小后增大9.小王與小張二人參加某射擊比賽預(yù)賽的五次測試成績?nèi)缦卤硭?,設(shè)小王與小張成績的樣本平均數(shù)分別為和,方差分別為和,則()第一次第二次第三次第四次第五次小王得分(環(huán))910579小張得分(環(huán))67557A. B.C. D.10.若函數(shù)在區(qū)間上單調(diào)遞增,則實數(shù)的取值范圍是()A. B.C. D.11.如圖,在長方體中,是線段上一點,且,若,則()A. B.C. D.12.已知雙曲線左右焦點為,過的直線與雙曲線的右支交于,兩點,且,若線段的中垂線過點,則雙曲線的離心率為()A.3 B.2C. D.二、填空題:本題共4小題,每小題5分,共20分。13.方程()所表示的直線恒過定點________14.函數(shù)滿足,且,則的最小值為___________.15.如圖,在直棱柱中,,則異面直線與所成角的余弦值為___________.16.設(shè)雙曲線(0<a<b)的半焦距為c,直線l過(a,0),(0,b)兩點,且原點到直線l的距離為c,求雙曲線的離心率三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知圓C經(jīng)過坐標(biāo)原點O和點(4,0),且圓心在x軸上(1)求圓C的方程;(2)已知直線l:與圓C相交于A、B兩點,求所得弦長值18.(12分)新型冠狀病毒的傳染主要是人與人之間進(jìn)行傳播,感染人群年齡大多數(shù)是歲以上人群.該病毒進(jìn)入人體后有潛伏期.潛伏期是指病原體侵入人體至最早出現(xiàn)臨床癥狀的這段時間.潛伏期越長,感染到他人的可能性越高.現(xiàn)對個病例的潛伏期(單位:天)進(jìn)行調(diào)查,統(tǒng)計發(fā)現(xiàn)潛伏期平均數(shù)為,方差為.如果認(rèn)為超過天的潛伏期屬于“長潛伏期”,按照年齡統(tǒng)計樣本,得到下面的列聯(lián)表:年齡/人數(shù)長期潛伏非長期潛伏50歲以上6022050歲及50歲以下4080(1)是否有的把握認(rèn)為“長期潛伏”與年齡有關(guān);(2)假設(shè)潛伏期服從正態(tài)分布,其中近似為樣本平均數(shù),近似為樣本方差.(i)現(xiàn)在很多省市對入境旅客一律要求隔離天,請用概率知識解釋其合理性;(ii)以題目中的樣本頻率估計概率,設(shè)個病例中恰有個屬于“長期潛伏”的概率是,當(dāng)為何值時,取得最大值.附:0.10.050.0102.7063.8416.635若,則,,.19.(12分)已知直線l過點A(﹣3,1),且與直線4x﹣3y+t=0垂直(1)求直線l的一般式方程;(2)若直線l與圓C:x2+y2=m相交于點P,Q,且|PQ|=8,求圓C方程20.(12分)我們知道:當(dāng)是圓O:上一點,則圓O的過點的切線方程為;當(dāng)是圓O:外一點,過作圓O的兩條切線,切點分別為,則方程表示直線AB的方程,即切點弦所在直線方程.請利用上述結(jié)論解決以下問題:已知圓C的圓心在x軸非負(fù)半軸上,半徑為3,且與直線相切,點在直線上,過點作圓C的兩條切線,切點分別為.(1)求圓C的方程;(2)當(dāng)時,求線段AB的長;(3)當(dāng)點在直線上運動時,求線段AB長度的最小值.21.(12分)已知拋物線C:上一點到焦點F的距離為2(1)求實數(shù)p的值;(2)若直線l過C的焦點,與拋物線交于A,B兩點,且,求直線l的方程22.(10分)如圖,在多面體ABCEF中,和均為等邊三角形,D是AC的中點,(1)證明:(2)若平面平面ACE,求二面角余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據(jù)系統(tǒng)抽樣的特點,寫出組數(shù)與對應(yīng)抽取編號的關(guān)系式,即可判斷和選擇.【詳解】根據(jù)題意,780名公務(wù)員中,采用系統(tǒng)抽樣的方法抽取30人,則需要分為組,每組人;設(shè)第組抽取的編號為,故可設(shè),又第一組抽中號,故可得,解得故,當(dāng)時,.故選:.2、D【解析】設(shè)公比為,依題意得到方程,即可求出,再根據(jù)等比數(shù)列通項公式計算可得;【詳解】解:設(shè)公比為,因為,,所以,即,解得,所以;故選:D3、A【解析】由,可得進(jìn)一步求出,由此得到,則該雙曲線的方程可求【詳解】,即,則.即,則該雙曲線的方程是:故選:A【點睛】方法點睛:求圓錐曲線的方程,常用待定系數(shù)法,先定式(根據(jù)已知確定焦點所在的坐標(biāo)軸,設(shè)出曲線的方程),再定式(根據(jù)已知建立方程組解方程組得解).4、B【解析】由等差數(shù)列前項和的性質(zhì)計算即可.【詳解】由等差數(shù)列前項和的性質(zhì)可得成等差數(shù)列,,即,得.故選:B.5、B【解析】由數(shù)列的性質(zhì)可得,計算可得到答案.【詳解】由題意,.故答案為B.【點睛】本題考查了數(shù)列的前n項和的性質(zhì),屬于基礎(chǔ)題.6、D【解析】利用等差數(shù)列下標(biāo)和的性質(zhì)求值即可.【詳解】由等差數(shù)列下標(biāo)和性質(zhì)知:.故選:D7、A【解析】根據(jù)兩直線平行的條件列方程,化簡求得,檢驗后確定正確答案.【詳解】由于直線與直線平行,所以,或,當(dāng)時,兩直線方程都為,即兩直線重合,所以不符合題意.經(jīng)檢驗可知符合題意.故選:A8、A【解析】先求得參數(shù)b,再去依次去求、、,即可判斷出的單調(diào)性.【詳解】由得則,由得a在上增大時,增大.故選:A9、C【解析】根據(jù)圖表數(shù)據(jù)可以看出小王和小張的平均成績和成績波動情況.【詳解】解:從圖表中可以看出小王每次的成績均不低于小張,但是小王成績波動比較大,故設(shè)小王與小張成績的樣本平均數(shù)分別為和,方差分別為和.可知故選:C10、A【解析】由函數(shù)在上單調(diào)遞增,可得,從而可求出實數(shù)的取值范圍【詳解】由,得,因為函數(shù)在區(qū)間上單調(diào)遞增,所以在區(qū)間上恒成立,即恒成立,因為,所以,所以,所以實數(shù)的取值范圍為,故選:A11、A【解析】將利用、、表示,再利用空間向量的加法可得出關(guān)于、、的表達(dá)式,進(jìn)而可求得的值.【詳解】連接、,因,因為是線段上一點,且,則,因此,因此,.故選:A.12、C【解析】由雙曲線的定義得出中各線段長(用表示),然后通過余弦定理得出的關(guān)系式,變形后可得離心率【詳解】由題意又則有:可得:,,中,中.可得:解得:則有:故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】將方程化為,令得系數(shù)等于0,即可得到答案.【詳解】方程可化為,由,得,所以方程()所表示的直線恒過定點.故答案為:.【點睛】本題考查了直線恒過定點問題,屬于基礎(chǔ)題.14、6【解析】化簡得出,由化簡后根據(jù)均值不等式建立不等式,求解二次不等式即可得解.【詳解】,由得:,(當(dāng)且僅當(dāng)時取等號),所以的最小值為6.故答案為:615、【解析】建立空間直角坐標(biāo)系后求相關(guān)的向量后再用夾角公式運算即可.【詳解】如圖,以C為坐標(biāo)原點,所在直線為x,y,z軸,建立空間直角坐標(biāo)系,則,所以,所以,故異面直線與所成角的余弦值為,故答案為:.16、e=2.【解析】先求出直線的方程,利用原點到直線的距離為,,求出的值,進(jìn)而根據(jù)求出離心率【詳解】由l過兩點(a,0),(0,b),得l的方程為bx+ay-ab=0.由原點到l的距離為c,得=c.將b=代入平方后整理,得162-16·+3=0.解關(guān)于的一元二次方程得=或.∵e=,∴e=或e=2.又0<a<b,故e===>.∴應(yīng)舍去e=.故所求離心率e=2.【點睛】本題考查雙曲線性質(zhì),考查求雙曲線的離心率常用的方法即構(gòu)造出關(guān)于的等式,屬于中檔題三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)求出圓心和半徑,寫出圓的方程;(2)求出圓心到直線距離,進(jìn)而利用垂徑定理求出弦長.【小問1詳解】由題意可得,圓心為(2,0),半徑為2.則圓的方程為;【小問2詳解】由(1)可知:圓C半徑為,設(shè)圓心(2,0)到l的距離為d,則,由垂徑定理得:18、(1)有;(2)(i)答案見解析;(ii)250.【解析】(1)根據(jù)列聯(lián)表中的數(shù)據(jù),利用求得,與臨界表值對比下結(jié)論;(2)(ⅰ)根據(jù),利用小概率事件判斷;(ⅱ)易得一個患者屬于“長潛伏期”的概率是,進(jìn)而得到,然后判斷其單調(diào)性求解.【詳解】(1)依題意有,由于,故有的把握認(rèn)為“長期潛伏”與年齡有關(guān);(2)(ⅰ)若潛伏期,由,得知潛伏期超過天的概率很低,因此隔離天是合理的;(ⅱ)由于個病例中有個屬于長潛伏期,若以樣本頻率估計概率,一個患者屬于“長潛伏期”的概率是,于是,則,,當(dāng)時,;當(dāng)時,;∴,.故當(dāng)時,取得最大值.【點睛】方法點睛:利用獨立重復(fù)試驗概率公式可以簡化求概率的過程,但需要注意檢查該概率模型是否滿足公式的三個條件:(1)在一次試驗中某事件A發(fā)生的概率是一個常數(shù)p;(2)n次試驗不僅是在完全相同的情況下進(jìn)行的重復(fù)試驗,而且各次試驗的結(jié)果是相互獨立的;(3)該公式表示n次試驗中事件A恰好發(fā)生了k次的概率19、(1)3x+4y+5=0(2)x2+y2=17【解析】(1)由垂直關(guān)系得過直線l的斜率,由點斜式化簡即可求解l的一般式方程;(2)結(jié)合勾股定理建立弦心距(由點到直線距離公式求解),半弦長,圓半徑的基本關(guān)系,解出,即可求解圓C的方程【小問1詳解】因為直線l與直線4x﹣3y+t=0垂直,所以直線l的斜率為,故直線l的方程為,即3x+4y+5=0,因此直線l的一般式方程為3x+4y+5=0;【小問2詳解】圓C:x2+y2=m的圓心為(0,0),半徑為,圓心(0,0)到直線l的距離為,則半徑滿足m=42+12=17,即m=17,所以圓C:x2+y2=1720、(1);(2);(3)4.【解析】(1)根據(jù)圓圓心和半徑設(shè)圓的標(biāo)準(zhǔn)方程為,利用圓心到切線的距離等于圓的半徑即可求出a;(2)根據(jù)題意寫出AB的方程,根據(jù)垂徑定理即可求出弦長;(3)根據(jù)題意求出AB經(jīng)過的定點Q,當(dāng)CQ垂直于AB時,AB最短.【小問1詳解】由題,設(shè)圓C的標(biāo)準(zhǔn)方程為,則,解得.故圓C方程為;【小問2詳解】根據(jù)題意可知,直線的方程為,即,圓心C到直線的距離為,故弦長;【小問3詳解】設(shè),則,又直線方程為:,故直線過定點Q,設(shè)圓心C到直線距離為,則,故當(dāng)最大時,最短,而,故與垂直時最大,此時,,∴線段長度的最小值4.21、(1)2(2)或【解析】(1)根據(jù)拋物線上的點到焦點與準(zhǔn)線的距離相等可得到結(jié)果(2)通過聯(lián)立拋物線與直線方程利用韋達(dá)定理求解關(guān)系式即可得到結(jié)果【小問1詳解】拋物線焦點為,準(zhǔn)線方程為,因為點到焦點F距離為2,所以,解得【小問2詳解】拋物線C的焦點坐標(biāo)為,當(dāng)斜率不存在時,可得不滿足題意,當(dāng)斜率存在時,設(shè)直線l的方程為聯(lián)立方程,得,顯然,設(shè),,則,所以,解得所以直線l的方程為或22、(1)證明見解析(2)【解析】(1)根據(jù)等腰三角形三線合一的性質(zhì)得到、,即可得到平面,再根據(jù),即可得證;(2)由面面垂直的性質(zhì)得到平面,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論