云南省昭通市三中2025屆高二上數(shù)學(xué)期末檢測模擬試題含解析_第1頁
云南省昭通市三中2025屆高二上數(shù)學(xué)期末檢測模擬試題含解析_第2頁
云南省昭通市三中2025屆高二上數(shù)學(xué)期末檢測模擬試題含解析_第3頁
云南省昭通市三中2025屆高二上數(shù)學(xué)期末檢測模擬試題含解析_第4頁
云南省昭通市三中2025屆高二上數(shù)學(xué)期末檢測模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

云南省昭通市三中2025屆高二上數(shù)學(xué)期末檢測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若直線與圓只有一個公共點,則m的值為()A. B.C. D.2.對于實數(shù)a,b,c,下列命題為真命題的是()A.若,則 B.若,則C.若,則 D.若,則3.如圖,有一個水平放置的透明無蓋的正方體容器,容器高8cm,將一個球放在容器口,再向容器內(nèi)注水,當(dāng)球面恰好接觸水面時測得水深為6cm,如果不計容器的厚度,則球的體積為A. B.C. D.4.已知是虛數(shù)單位,若,則復(fù)數(shù)z的虛部為()A.3 B.-3iC.-3 D.3i5.已知命題p:,總有,則為()A.,使得 B.,使得C.,總有 D.,總有6.在平面直角坐標(biāo)系xOy中,點(0,4)關(guān)于直線x-y+1=0的對稱點為()A.(-1,2) B.(2,-1)C.(1,3) D.(3,1)7.根據(jù)如下樣本數(shù)據(jù),得到回歸直線方程,則x345678y4.02.5-0.50.5-2.0-3.0A. B.C. D.8.橢圓焦距為()A. B.8C.4 D.9.執(zhí)行如圖所示的程序框圖,則輸出S的值是()A. B.C. D.10.在中,已知角A,B,C所對邊為a,b,c,,,,則()A. B.C. D.111.我國古代銅錢蘊(yùn)含了“外圓內(nèi)方”“天地合一”的思想.現(xiàn)有一銅錢如圖,其中圓的半徑為r,正方形的邊長為,若在圓內(nèi)隨即取點,取自陰影部分的概率是p,則圓周率的值為()A. B.C. D.12.已知雙曲線(,)的左、右焦點分別為,,點A的坐標(biāo)為,點P是雙曲線在第二象限的部分上一點,且,點Q是線段的中點,且,Q關(guān)于直線PA對稱,則雙曲線的離心率為()A.3 B.2C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列是公差不為零的等差數(shù)列,,,成等比數(shù)列,第1,2項與第10,11項的和為68,則數(shù)列的通項公式是________.14.函數(shù)滿足,且,則的最小值為___________.15.已知實數(shù),滿足,則的最大值為______.16.如果方程表示焦點在軸上的橢圓,那么實數(shù)的取值范圍是______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的離心率為,點在橢圓上.(1)求橢圓的方程;(2)過點作軸的平行線交軸于點,過點的直線與橢圓交于兩個不同的點、,直線、與軸分別交于、兩點,若,求直線的方程;(3)在第(2)問條件下,點是橢圓上的一個動點,請問:當(dāng)點與點關(guān)于軸對稱時的面積是否達(dá)到最大?并說明理由.18.(12分)已知圓的圓心在直線上,與軸正半軸相切,且被直線:截得的弦長為.(1)求圓的方程;(2)設(shè)點在圓上運動,點,且點滿足,記點的軌跡為.①求的方程,并說明是什么圖形;②試探究:在直線上是否存在定點(異于原點),使得對于上任意一點,都有為一常數(shù),若存在,求出所有滿足條件的點的坐標(biāo),若不存在,說明理由.19.(12分)已知函數(shù),為的導(dǎo)函數(shù)(1)求的定義域和導(dǎo)函數(shù);(2)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;(3)若對,都有成立,且存在,使成立,求實數(shù)a的取值范圍20.(12分)已知的展開式中二項式系數(shù)和為16(1)求展開式中二項式系數(shù)最大的項;(2)設(shè)展開式中的常數(shù)項為p,展開式中所有項系數(shù)的和為q,求21.(12分)已知動直線l:(m+3)x-(m+2)y+m=0與圓C:(x-3)2+(y-4)2=9(1)求證:無論m為何值,直線l與圓C總相交(2)m為何值時,直線l被圓C所截得的弦長最?。空埱蟪鲈撟钚≈?2.(10分)已知曲線C的方程為(1)判斷曲線C是什么曲線,并求其標(biāo)準(zhǔn)方程;(2)過點的直線l交曲線C于M,N兩點,若點P為線段MN的中點,求直線l的方程

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】利用圓心到直線的距離等于半徑列方程,化簡求得的值.【詳解】圓的圓心為,半徑為,直線與圓只有一個公共點,所以直線與圓相切,所以.故選:D2、D【解析】判斷不等式的真假,就是要考慮在不等式的變形過程中是否遵守不等式變形的規(guī)則.【詳解】若,令,,,,,故A錯誤;若,令c=0,則,故B錯誤;若,令a=-1,b=-2,,,故C錯誤;∵,故,根據(jù)不等式運算規(guī)則,在不等式的兩邊同時乘以或除以一個正數(shù),不等式的方向不變,故D正確.故選:D.3、A【解析】根據(jù)題意可求出正方體的上底面與球相交所得截面圓的半徑為4cm,再根據(jù)截面圓半徑,球的半徑以及球心距的關(guān)系,即可求出球的半徑,從而得到球的體積【詳解】設(shè)球的半徑為cm,根據(jù)已知條件知,正方體的上底面與球相交所得截面圓的半徑為4cm,球心到截面圓的距離為cm,所以由,得,所以球的體積為故選:A【點睛】本題主要考查球的體積公式的應(yīng)用,以及球的結(jié)構(gòu)特征的應(yīng)用,屬于基礎(chǔ)題4、C【解析】由復(fù)數(shù)的除法運算可得答案.【詳解】由題得,所以復(fù)數(shù)z的虛部為-3.故選:C.5、B【解析】由含有一個量詞的命題的否定的定義求解.【詳解】因為命題p:,總有是全稱量詞命題,所以其否定為存在量詞命題,即,使得,故選:B6、D【解析】設(shè)出點(0,4)關(guān)于直線的對稱點的坐標(biāo),根據(jù)題意列出方程組,解方程組即可【詳解】解:設(shè)點(0,4)關(guān)于直線x-y+1=0的對稱點是(a,b),則,解得:,故選:D7、B【解析】作出散點圖,由散點圖得出回歸直線中的的符號【詳解】作出散點圖如圖所示.由圖可知,回歸直線=x+的斜率<0,當(dāng)x=0時,=>0.故選B【點睛】本題考查了散點圖的概念,擬合線性回歸直線第一步畫散點圖,再由數(shù)據(jù)計算的值8、A【解析】由題意橢圓的焦點在軸上,故,求解即可【詳解】由題意,,故橢圓的焦點在軸上故焦距故選:A9、C【解析】按照程序框圖的流程進(jìn)行計算.【詳解】,故輸出S的值為.故選:C10、B【解析】利用正弦定理求解.【詳解】在中,由正弦定理得,解得,故選:B.11、B【解析】根據(jù)圓和正方形的面積公式結(jié)合幾何概型概率公式求解即可.【詳解】由可得故選:B12、C【解析】由角平分線的性質(zhì)可得,結(jié)合已知條件即可求雙曲線的離心率.【詳解】由題設(shè),易知:,由知:,即,整理得:.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用基本量結(jié)合已知列方程組求解即可.【詳解】設(shè)等差數(shù)列的公差為由題可知即因為,所以解得:所以.故答案為:14、6【解析】化簡得出,由化簡后根據(jù)均值不等式建立不等式,求解二次不等式即可得解.【詳解】,由得:,(當(dāng)且僅當(dāng)時取等號),所以的最小值為6.故答案為:615、【解析】由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組得到最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)得答案.【詳解】由約束條件作出可行域如圖所示,化目標(biāo)函數(shù)為,由圖可知,當(dāng)直線過點時,直線在y軸上的截距最大,z最大,聯(lián)立方程組,解得點,則取得最大值為.故答案為:【點睛】本題考查的是線性規(guī)劃問題,解決線性規(guī)劃問題的實質(zhì)是把代數(shù)問題幾何化,即數(shù)形結(jié)合的思想,需要注意的是:一,準(zhǔn)確無誤作出可行域;二,畫目標(biāo)函數(shù)所對應(yīng)直線時,要注意讓其斜率與約束條件中的直線的斜率比較;三,一般情況下,目標(biāo)函數(shù)的最值會在可行域的端點或邊界上取得.16、【解析】化簡橢圓的方程為標(biāo)準(zhǔn)形式,列出不等式,即可求解.【詳解】由題意,方程可化為,因為方程表示焦點在軸上的橢圓,可得,解得,實數(shù)的取值范圍是.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2);(3)當(dāng)點與點關(guān)于軸對稱時,的面積達(dá)到最大,理由見解析.【解析】(1)設(shè),可得出,,將點的坐標(biāo)代入橢圓的方程,求出的值,即可得出橢圓的方程;(2)分析可知直線的斜率存在,設(shè)直線的方程為,設(shè)點、,將直線的方程與橢圓的方程聯(lián)立,列出韋達(dá)定理,由已知可得,結(jié)合韋達(dá)定理可求得的值,即可得出直線的方程;(3)設(shè)與直線平行且與橢圓相切的直線的方程為,將該直線方程與橢圓的方程聯(lián)立,由判別式為零可求得,分析可知當(dāng)點為直線與橢圓的切點時,的面積達(dá)到最大,求出直線與橢圓的切點坐標(biāo),可得出結(jié)論.【小問1詳解】解:因為,設(shè),則,,所以,橢圓的方程可表示為,將點的坐標(biāo)代入橢圓的方程可得,解得,因此,橢圓的方程為.【小問2詳解】解:設(shè)線段的中點為,因為,則軸,故直線、的傾斜角互補(bǔ),易知點,若直線軸,則、為橢圓短軸的兩個頂點,不妨設(shè)點、,則,,,不合乎題意.所以,直線的斜率存在,設(shè)直線的方程為,設(shè)點、,聯(lián)立,可得,,由韋達(dá)定理可得,,,,則,所以,解得,因此,直線的方程為.【小問3詳解】解:設(shè)與直線平行且與橢圓相切的直線的方程為,聯(lián)立,可得(*),,解得,由題意可知,當(dāng)點為直線與橢圓的切點時,此時的面積取最大值,當(dāng)時,方程(*)為,解得,此時,即點.此時,點與點關(guān)于軸對稱,因此,當(dāng)點與點關(guān)于軸對稱時,的面積達(dá)到最大.【點睛】方法點睛:圓錐曲線中的最值問題解決方法一般分兩種:一是幾何法,特別是用圓錐曲線的定義和平面幾何的有關(guān)結(jié)論來求最值;二是代數(shù)法,常將圓錐曲線的最值問題轉(zhuǎn)化為二次函數(shù)或三角函數(shù)的最值問題,然后利用基本不等式、函數(shù)的單調(diào)性或三角函數(shù)的有界性等求最值18、(1);(2)①,圓;②存在,.【解析】(1)設(shè)圓心,根據(jù)題意,得到半徑,根據(jù)弦長的幾何表示,由題中條件,列出方程求解,得出,從而可得圓心和半徑,進(jìn)而可得出結(jié)果;(2)①設(shè),根據(jù)向量的坐標(biāo)表示,由題中條件,得到,代入圓的方程,即可得出結(jié)果;②假設(shè)存在一點滿足(其中為常數(shù)),設(shè),根據(jù)題意,得到,再由①,得到,兩式聯(lián)立化簡整理,得到,推出,求解得出,即可得出結(jié)果.【詳解】(1)設(shè)圓心,則由圓與軸正半軸相切,可得半徑.∵圓心到直線的距離,由,解得.故圓心為或,半徑等于.∵圓與軸正半軸相切圓心只能為故圓的方程為;(2)①設(shè),則:,,∵點A在圓上運動即:所以點的軌跡方程為,它是一個以為圓心,以為半徑的圓;②假設(shè)存在一點滿足(其中為常數(shù))設(shè),則:整理化簡得:,∵在軌跡上,化簡得:,所以整理得,解得:;存在滿足題目條件.【點睛】本題主要考查求圓的方程,考查圓中的定點問題,涉及圓的弦長公式等,屬于??碱}型.19、(1),(2)在單減,也單減,無增區(qū)間(3)【解析】(1)根據(jù)分母不等于0,對數(shù)的真數(shù)大于零即可求得函數(shù)的定義域,根據(jù)基本初等函數(shù)的求導(dǎo)公式及商的導(dǎo)數(shù)公式即可求出函數(shù)的導(dǎo)函數(shù);(2)求出函數(shù)的導(dǎo)函數(shù),再根據(jù)導(dǎo)函數(shù)的符號即可得出答案;(3)若對,都有成立,即,即,令,,只要即可,利用導(dǎo)數(shù)求出函數(shù)的最小值即可求出的范圍,,,求出函數(shù)的值域,根據(jù)存在,使成立,則0在函數(shù)的值域中,從而可得出的范圍,即可得解.【小問1詳解】解:的定義域為,;【小問2詳解】解:當(dāng)時,,恒成立,所以在和上遞減;【小問3詳解】解:若對,都有成立,即,即,令,,則,對于函數(shù),,當(dāng)時,,當(dāng)時,,所以函數(shù)在上遞增,在上遞減,所以,當(dāng)時,,所以,所以,故恒成立,在為減函數(shù),所以,所以,由(1)知,,所以,記,令,,則原式的值域為,因為存在,使成立,所以,,所以,綜上,【點睛】本題考查了函數(shù)的定義域及導(dǎo)數(shù)的四則運算,考查了利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,考查了不等式恒成立問題,考查了計算能力及數(shù)據(jù)分析能力,對不等式恒成立合理變形轉(zhuǎn)化為求最值是解題關(guān)鍵.20、(1)(2)【解析】(1)由二項式系數(shù)和的性質(zhì)得出,再由性質(zhì)求出展開式中二項式系數(shù)最大的項;(2)由通項得出,利用賦值法得出,再求解【小問1詳解】由題意可得,解得.,展開式中二項式系數(shù)最大的項為;【小問2詳解】,其展開式的通項為,令,得∴常數(shù)項令,可得展開式中所有項系數(shù)的和為,∴21、(1)詳見解析(2)m為-時,截得的弦長最小,最小值為2【解析】(1)將直線l變形,可知直線l過定點,證明定點在圓內(nèi)部;(2)利用垂徑定理和弦長公式可得.【詳解】(1)證明:直線l變形為m(x-y+1)+(3x-2y)=0令解得,如圖所示,故動直線l恒過定點A(2,3)而|AC|==<3(半徑)∴點A在圓內(nèi),故無論m取何值,直線l與圓C總相交(2)解:由平面幾何知識知,弦心距越大,弦長越

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論