版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
陜西省西安市新城區(qū)西安中學2025屆高一上數(shù)學期末聯(lián)考試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.用斜二測畫法畫一個水平放置的平面圖形的直觀圖是如圖所示的一個正方形,則原來的圖形是()A. B.C. D.2.在平面直角坐標系中,大小為的角始邊與軸非負半軸重合,頂點與原點O重合,其終邊與圓心在原點,半徑為3的圓相交于一點P,點Q坐標為,則的面積為()A. B.C. D.23.函數(shù)的圖像可能是()A. B.C. D.4.下列四個集合中,是空集的是()A. B.C. D.5.在如圖的正方體中,M、N分別為棱BC和棱的中點,則異面直線AC和MN所成的角為()A. B.C. D.6.已知函數(shù),,若存在實數(shù),使得,則的取值范圍是()A. B.C. D.7.已知,,,則A. B.C. D.8.已知函數(shù)為奇函數(shù),,若對任意、,恒成立,則的取值范圍為()A. B.C. D.9.已知函數(shù)與的部分圖象如圖1(粗線為部分圖象,細線為部分圖象)所示,則圖2可能是下列哪個函數(shù)的部分圖象()A. B.C. D.10.用斜二測畫法畫一個水平放置的平面圖形的直觀圖為如圖所示的直角梯形,其中BC=AB=2,則原平面圖形的面積為()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù)恰有2個零點,則實數(shù)m的取值范圍是___________.12.某網店根據以往某品牌衣服的銷售記錄,繪制了日銷售量的頻率分布直方圖,如圖所示,由此估計日銷售量不低于50件的概率為________13.已知函數(shù),則無論取何值,圖象恒過的定點坐標______;若在上單調遞減,則實數(shù)的取值范圍是______14.古希臘數(shù)學家歐幾里得所著《幾何原本》中的“幾何代數(shù)法”,很多代數(shù)公理、定理都能夠通過圖形實現(xiàn)證明,并稱之為“無字證明”.如圖,O為線段中點,C為上異于O的一點,以為直徑作半圓,過點C作的垂線,交半圓于D,連結,過點C作的垂線,垂足為E.設,則圖中線段,線段,線段_______;由該圖形可以得出的大小關系為___________.15.已知點A(-1,1),B(2,-2),若直線l:x+my+m=0與線段AB相交(包含端點的情況),則實數(shù)m的取值范圍是________________.16.給出下列命題“①設表示不超過的最大整數(shù),則;②定義:若任意,總有,就稱集合為的“閉集”,已知且為的“閉集”,則這樣的集合共有7個;③已知函數(shù)為奇函數(shù),在區(qū)間上有最大值5,那么在上有最小值.其中正確的命題序號是_________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知點,圓(1)求過點M的圓的切線方程;(2)若直線與圓相交于A,B兩點,且弦AB的長為,求的值18.如圖,在平面直角坐標系中,角,的始邊均為軸正半軸,終邊分別與圓交于,兩點,若,,且點的坐標為(1)若,求實數(shù)的值;(2)若,求的值19.已知函數(shù),(1)若,求函數(shù)的值域;(2)已知,且對任意的,不等式恒成立,求的取值范圍20.已知函數(shù)f(x)=ln(ex+1)+ax是偶函數(shù),g(x)=f(lnx)(e=2.71828…)(Ⅰ)求實數(shù)a的值;(Ⅱ)判斷并證明函數(shù)g(x)在區(qū)間(0,1)上的單調性21.已知集合,(1)當時,求;(2)若,求a的取值范圍
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】由斜二測畫法的規(guī)則知與x'軸平行或重合的線段與x’軸平行或重合,其長度不變,與y軸平行或重合的線段與x’軸平行或重合,其長度變成原來的一半,正方形的對角線在y'軸上,可求得其長度為,故在平面圖中其在y軸上,且其長度變?yōu)樵瓉淼?倍,長度為2,觀察四個選項,A選項符合題意.故應選A考點:斜二測畫法點評:注意斜二測畫法中線段長度的變化2、B【解析】根據題意可得、,結合三角形的面積公式計算即可.【詳解】由題意知,,,所以.故選:B3、D【解析】∵,∴,∴函數(shù)需向下平移個單位,不過(0,1)點,所以排除A,當時,∴,所以排除B,當時,∴,所以排除C,故選D.考點:函數(shù)圖象的平移.4、D【解析】對每個集合進行逐一檢驗,研究集合內的元素是否存在即可選出.【詳解】選項A,;選項B,;選項C,;選項D,,方程無解,.選:D.5、C【解析】根據異面直線所成角的定義,找到與直線平行并且和相交的直線,即可找到異面直線所成的角,解三角形可求得結果.【詳解】連接如下圖所示,分別是棱和棱的中點,,正方體中可知,是異面直線所成的角,為等邊三角形,.故選:C.【點睛】此題是個基礎題,考查異面直線所成的角,以及解決異面直線所成的角的方法(平移法)的應用,體現(xiàn)了轉化的思想和數(shù)形結合的思想.6、B【解析】根據給定條件求出函數(shù)的值域,由在此值域內解不等式即可作答.【詳解】因函數(shù)的值域是,于是得函數(shù)的值域是,因存在實數(shù),使得,則,因此,,解得,所以的取值范圍是.故選:B7、A【解析】故選8、A【解析】由奇函數(shù)性質求得,求得函數(shù)的解析式,不等式等價于,由此求得答案.【詳解】解:因為函數(shù)的定義域為,又為奇函數(shù),∴,解得,∴,所以,要使對任意、,恒成立,只需,又,∴,即,故選:A.9、B【解析】結合函數(shù)的奇偶性、特殊點的函數(shù)值確定正確選項.【詳解】由圖1可知為偶函數(shù),為奇函數(shù),A選項,,所以是偶函數(shù),不符合圖2.A錯.C選項,,所以是偶函數(shù),不符合圖2.C錯.D選項,,所以的定義域不包括,不符合圖2.D錯.B選項,,所以是奇函數(shù),符合圖2,所以B符合.故選:B10、C【解析】先求出直觀圖中,∠ADC=45°,AB=BC=2,,DC=4,即可得到原圖形是一個直角梯形和各個邊長及高,直接求面積即可.【詳解】直觀圖中,∠ADC=45°,AB=BC=2,DC⊥BC,∴,DC=4,∴原來的平面圖形上底長為2,下底為4,高為的直角梯形,∴該平面圖形的面積為.故選:C二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】討論上的零點情況,結合題設確定上的零點個數(shù),根據二次函數(shù)性質求m的范圍.【詳解】當時,恒有,此時無零點,則,∴要使上有2個零點,只需即可,故有2個零點有;當時,存在,此時有1個零點,則,∴要使上有1個零點,只需即可,故有2個零點有;綜上,要使有2個零點,m的取值范圍是.故答案為:.12、55【解析】用減去銷量為的概率,求得日銷售量不低于50件的概率.【詳解】用頻率估計概率知日銷售量不低于50件的概率為1-(0.015+0.03)×10=0.55.故答案為:【點睛】本小題主要考查根據頻率分布直方圖計算事件概率,屬于基礎題.13、①.②.【解析】計算的值,可得出定點坐標;分析可知,對任意的,,利用參變量分離法可求得,分、、三種情況討論,分析函數(shù)在上的單調性,由此可得出實數(shù)的取值范圍.【詳解】因為,故函數(shù)圖象恒過的定點坐標為;由題意可知,對任意的,,則,因為函數(shù)在上單調遞增,且當時,,所以,.當時,在上為減函數(shù),函數(shù)為增函數(shù),所以,函數(shù)、在上均為減函數(shù),此時,函數(shù)在上為減函數(shù),合乎題意;當且時,,不合乎題意;當時,在上為增函數(shù),函數(shù)為增函數(shù),函數(shù)、在上均為增函數(shù),此時,函數(shù)在上為增函數(shù),不合乎題意.綜上所述,若在上單調遞減,.故答案為:;.14、①.②.【解析】利用射影定理求得,結合圖象判斷出的大小關系.【詳解】在中,由射影定理得,即.在中,由射影定理得,即根據圖象可知,即.故答案為:;15、【解析】本道題目先繪圖,然后結合圖像判斷該直線的位置,計算斜率,建立不等式,即可.【詳解】要使得與線段AB相交,則該直線介于1與2之間,1號直線的斜率為,2號直線的斜率為,建立不等式關系轉化為,所以或解得m范圍為【點睛】本道題考查了直線與直線的位置關系,結合圖像,判斷直線的位置,即可.16、①②【解析】對于①,如果,則,也就是,所以,進一步計算可以得到該和為,故①正確;對于②,我們把分成四組:,由題設可知不是“閉集”中的元素,其余三組元素中的每組元素必定在“閉集”中同時出現(xiàn)或同時不出現(xiàn),故所求的“閉集”的個數(shù)為,故②正確;對于③,因為在上的最大值為,故在上的最大值為,所以在上的最小值為,在上的最小值為,故③錯.綜上,填①②點睛:(1)根據可以得到,因此,這樣的共有,它們的和為,依據這個規(guī)律可以寫出和并計算該和(2)根據閉集的要求,中每組元素都是同時出現(xiàn)在閉集中或者同時不出現(xiàn)在閉集中,故可以根據子集的個數(shù)公式來計算(3)注意把非奇非偶函數(shù)轉化為奇函數(shù)或偶函數(shù)來討論三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)或.(2)【解析】(1)分切線的斜率不存在與存在兩種情況分析.當斜率存在時設方程為,再根據圓心到直線的距離等于半徑求解即可.(2)利用垂徑定理根據圓心到直線的距離列出等式求解即可.【詳解】解:(1)由題意知圓心的坐標為,半徑,當過點M的直線的斜率不存在時,方程為由圓心到直線的距離知,此時,直線與圓相切當過點M的直線的斜率存在時,設方程為,即.由題意知,解得,∴方程為故過點M的圓的切線方程為或(2)∵圓心到直線的距離為,∴,解得【點睛】本題主要考查了直線與圓相切與相交時的求解.注意直線過定點時分析斜率不存在與存在兩種情況.直線與圓相切用圓心到直線的距離等于半徑列式,直線與圓相交用垂徑定理列式.屬于中檔題.18、(1);(2)【解析】(1)根據題中條件,先由二倍角的正切公式,求出,再根據任意角的三角函數(shù),即可求出的值;(2)由題中條件,根據兩角差的正切公式,先得到,再由同角三角函數(shù)基本關系,求出和,利用二倍角公式,以及兩角和的余弦公式,即可求出結果.【詳解】(1)由題意可得,∴,或∵,∴,即,∴(2)∵,,,∴,,∴,,∴19、(1);(2)當時,;當且時,.【解析】(1)由題設,令則,即可求值域.(2)令,將問題轉化為在上恒成立,再應用對勾函數(shù)的性質,討論、,分別求出的取值范圍【小問1詳解】因為,設,則,因為,所以,即當時,,當或時,,所以的值域為.【小問2詳解】因為,所以,又可化成,因為,所以,所以,令,則,,依題意,時,恒成立,設,,當時,當且僅當,,故;當,時,在上單調遞增,當時,,故,綜上所述:當時,;當且時,.【點睛】關鍵點點睛:應用換元法及參變分離,將問題轉化為二次函數(shù)求值域,及由不等式恒成立、對勾函數(shù)的最值求參數(shù)范圍.20、(I)a=(II)答案見解析【解析】(I)由函數(shù)f(x)=ln(ex+1)+ax偶函數(shù),可得f(-x)=f(x),解得a.(II)由(I)可得:f(x)=ln(ex+1).g(x)=f(lnx)=ln(x+1).利用函數(shù)單調性的定義確定函數(shù)的單調性即可.【詳解】(I)∵函數(shù)f(x)=ln(ex+1)+ax是偶函數(shù),∴f(-x)=f(x),∴l(xiāng)n(e-x+1)-ax=ln(ex+1)+ax,化為:(2a-1)x=0,x∈R,解得a=經過驗證滿足條件∴a=(II)由(I)可得:
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2021-2022 -2 形勢與政策學習通超星期末考試答案章節(jié)答案2024年
- 河北省邯鄲市九校2025屆數(shù)學高一上期末學業(yè)質量監(jiān)測模擬試題含解析
- 2025屆湖北省孝感市安陸市第一中學數(shù)學高一上期末考試試題含解析
- 2025屆全國百強校山西大學附屬中學高一數(shù)學第一學期期末調研試題含解析
- 2024年房屋買賣合同欺詐
- 2025屆深圳大學師范學院附屬中學高三數(shù)學第一學期期末考試試題含解析
- 2024年工業(yè)產品買賣合同
- 2024年就業(yè)安置勞動合同
- 湖南省衡陽縣第三中學2025屆高二生物第一學期期末統(tǒng)考模擬試題含解析
- 2025屆新疆兵地六校高一上數(shù)學期末考試試題含解析
- 衛(wèi)生系統(tǒng)突發(fā)公共衛(wèi)生事件應急演練方案
- 北師大版小學數(shù)學三年級上冊第二單元《觀察物體-看一看(一)》教學設計(公開課教案及學習任務單)
- 合作賣土地合同模板
- 大一統(tǒng)王朝的鞏固 課件 2024-2025學年統(tǒng)編版七年級歷史上冊
- 2024變電站無人機巡檢系統(tǒng)規(guī)范第1部分:技術規(guī)范
- 2024-2024部編版九年級語文上冊期末考試測試卷(附答案)
- 2024-2025學年八年級生物上冊第一學期 期末綜合模擬測試卷( 人教版)
- 綠色課程:農村幼兒園教育質量提升的有效探索
- 【課件】2025屆高三生物一輪復習備考策略研討
- 銀行股份有限公司同城票據交換業(yè)務操作規(guī)程(試行)
- 2024年新高考Ⅰ卷、Ⅱ卷、甲卷詩歌鑒賞試題講評課件
評論
0/150
提交評論