海南省白沙中學(xué)2025屆數(shù)學(xué)高二上期末綜合測試模擬試題含解析_第1頁
海南省白沙中學(xué)2025屆數(shù)學(xué)高二上期末綜合測試模擬試題含解析_第2頁
海南省白沙中學(xué)2025屆數(shù)學(xué)高二上期末綜合測試模擬試題含解析_第3頁
海南省白沙中學(xué)2025屆數(shù)學(xué)高二上期末綜合測試模擬試題含解析_第4頁
海南省白沙中學(xué)2025屆數(shù)學(xué)高二上期末綜合測試模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

海南省白沙中學(xué)2025屆數(shù)學(xué)高二上期末綜合測試模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.我們知道,償還銀行貸款時,“等額本金還款法”是一種很常見的還款方式,其本質(zhì)是將本金平均分配到每一期進行償還,每一期的還款金額由兩部分組成,一部分為每期本金,即貸款本金除以還款期數(shù),另一部分是利息,即貸款本金與已還本金總額的差乘以利率.自主創(chuàng)業(yè)的大學(xué)生張華向銀行貸款的本金為48萬元,張華跟銀行約定,按照等額本金還款法,每個月還一次款,20年還清,貸款月利率為,設(shè)張華第個月的還款金額為元,則()A.2192 B.C. D.2.已知橢圓經(jīng)過點,當(dāng)該橢圓的四個頂點構(gòu)成的四邊形的周長最小時,其標(biāo)準(zhǔn)方程為()A. B.C. D.3.已知等比數(shù)列的首項為1,公比為2,則=()A. B.C. D.4.已知向量與平行,則()A. B.C. D.5.高中生在假期參加志愿者活動,既能服務(wù)社會又能鍛煉能力.某同學(xué)計劃在福利院、社區(qū)、圖書館和醫(yī)院中任選兩個單位參加志愿者活動,則參加圖書館活動的概率為()A. B.C. D.6.雙曲線的漸近線方程為()A. B.C. D.7.記等比數(shù)列的前項和為,若,,則()A.12 B.18C.21 D.278.在下列命題中正確的是()A.已知是空間三個向量,則空間任意一個向量總可以唯一表示為B.若所在的直線是異面直線,則不共面C.若三個向量兩兩共面,則共面D.已知A,B,C三點不共線,若,則A,B,C,D四點共面9.函數(shù)f(x)=-1+lnx,對?x0,f(x)≥0成立,則實數(shù)a的取值范圍是()A(-∞,2] B.[2,+∞)C.(-∞,1] D.[1,+∞)10.過雙曲線的右焦點有一條弦是左焦點,那么的周長為()A.28 B.C. D.11.已知復(fù)數(shù)滿足(其中為虛數(shù)單位),則復(fù)數(shù)的虛部為()A. B.C. D.12.設(shè),若函數(shù),有大于零的極值點,則A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.下圖是個幾何體的展開圖,圖①是由個邊長為的正三角形組成;圖②是由四個邊長為的正三角形和一個邊長為的正方形組成;圖③是由個邊長為的正三角形組成;圖④是由個邊長為的正方形組成.若幾何體能夠穿過直徑為的圓,則該幾何體的展開圖可以是______(填所有正確結(jié)論的序號).14.已知數(shù)列滿足下列條件:①數(shù)列是等比數(shù)列;②數(shù)列是單調(diào)遞增數(shù)列;③數(shù)列的公比滿足.請寫出一個符合條件的數(shù)列的通項公式__________.15.已知集合,,將中的所有元素按從大到小的順序排列構(gòu)成一個數(shù)列,則數(shù)列的前n項和的最大值為___________.16.寫出一個公比為3,且第三項小于1的等比數(shù)列______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)記數(shù)列的前n項和為,已知點在函數(shù)的圖像上(1)求數(shù)列的通項公式;(2)設(shè),求數(shù)列的前9項和18.(12分)已知橢圓:的離心率為,,分別為橢圓的左,右焦點,為橢圓上一點,的周長為.(1)求橢圓的方程;(2)為圓上任意一點,過作橢圓的兩條切線,切點分別為A,B,判斷是否為定值?若是,求出定值:若不是,說明理由,19.(12分)已知拋物線y2=2px(p>0)的焦點為F,過F且與x軸垂直的直線交該拋物線于A,B兩點,|AB|=4(1)求拋物線的方程;(2)過點F的直線l交拋物線于P,Q兩點,若△OPQ的面積為4,求直線l的斜率(其中O為坐標(biāo)原點)20.(12分)二項式展開式中第五項的二項式系數(shù)是第三項系數(shù)的4倍.求:(1);(2)展開式中的所有的有理項.21.(12分)已知函數(shù),.(1)當(dāng)時,求函數(shù)在區(qū)間上的最大值;(2)當(dāng)時,求函數(shù)的極值.22.(10分)已知橢圓的長軸長是6,離心率是.(1)求橢圓E的標(biāo)準(zhǔn)方程;(2)設(shè)O為坐標(biāo)原點,過點的直線l與橢圓E交于A,B兩點,判斷是否存在常數(shù),使得為定值?若存在,求出的值;若不存在,請說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】計算出每月應(yīng)還的本金數(shù),再計算第n個月已還多少本金,由此可計算出個月的還款金額.【詳解】由題意可知:每月還本金為2000元,設(shè)張華第個月的還款金額為元,則,故選:D2、A【解析】把點代入橢圓方程得,寫出橢圓頂點坐標(biāo),計算四邊形周長討論它取最小值時的條件即得解.【詳解】依題意得,橢圓的四個頂點為,順次連接這四個點所得四邊形為菱形,其周長為,,當(dāng)且僅當(dāng),即時取“=”,由得a2=12,b2=4,所求標(biāo)準(zhǔn)方程為.故選:A【點睛】給定兩個正數(shù)和(兩個正數(shù)倒數(shù)和)為定值,求這兩個正數(shù)倒數(shù)和(兩個正數(shù)和)的最值問題,可借助基本不等式中“1”的妙用解答.3、D【解析】數(shù)列是首項為1,公比為4的等比數(shù)列,然后可算出答案.【詳解】因為等比數(shù)列的首項為1,公比為2,所以數(shù)列是首項為1,公比為4的等比數(shù)列所以故選:D4、D【解析】根據(jù)兩向量平行可求得、的值,即可得出合適的選項.【詳解】由已知,解得,,則.故選:D.5、D【解析】對4個單位分別編號,利用列舉法求出概率作答.【詳解】記福利院、社區(qū)、圖書館和醫(yī)院分別為A,B,C,D,從4個單位中任選兩個的試驗有AB,AC,AD,BC,BD,CD,共6個基本事件,它們等可能,其中有參加圖書館活動的事件有AC,BC,CD,共3個基本事件,所以參加圖書館活動的概率.故選:D6、B【解析】把雙曲線的標(biāo)準(zhǔn)方程中的1換成0,可得其漸近線的方程【詳解】雙曲線的漸近線方程是,即,故選B【點睛】本題考查了雙曲線的標(biāo)準(zhǔn)方程與簡單的幾何性質(zhì)等知識,屬于基礎(chǔ)題7、C【解析】根據(jù)等比數(shù)列的性質(zhì),可知等比數(shù)列的公比,所以成等比數(shù)列,根據(jù)等比的中項性質(zhì)即可求出結(jié)果.【詳解】因為為等比數(shù)列的前項和,且,,易知等比數(shù)列的公比,所以成等比數(shù)列所以,所以,解得.故選:C8、D【解析】對于A,利用空間向量基本定理判斷,對于B,利用向量的定義判斷,對于C,舉例判斷,對于D,共面向量定理判斷【詳解】對于A,若三個向量共面,在平面,則空間中不在平面的向量不能用表示,所以A錯誤,對于B,因為向量是自由向量,是可以自由平移,所以當(dāng)所在的直線是異面直線時,有可能共面,所以B錯誤,對于C,當(dāng)三個向量兩兩共面時,如空間直角坐標(biāo)系中的3個基向量兩兩共面,但這3個向量不共面,所以C錯誤,對于D,因為A,B,C三點不共線,,且,所以A,B,C,D四點共面,所以D正確,故選:D9、B【解析】由導(dǎo)數(shù)求得的最小值,由最小值非負(fù)可得的范圍【詳解】定義域是,,若,則在上恒成立,單調(diào)遞增,,不合題意;若,則時,,遞減,時,,遞增,所以時,取得極小值也是最小值,由題意,解得故選:B10、C【解析】根據(jù)雙曲線方程得,,由雙曲線的定義,證出,結(jié)合即可算出△的周長【詳解】雙曲線方程為,,根據(jù)雙曲線的定義,得,,,,相加可得,,,因此△的周長,故選:C11、A【解析】由題目條件可得,即,然后利用復(fù)數(shù)的運算法則化簡.【詳解】因為,所以,則故復(fù)數(shù)的虛部為.故選:A.【點睛】本題考查復(fù)數(shù)的相關(guān)概念及復(fù)數(shù)的乘除運算,按照復(fù)數(shù)的運算法則化簡計算即可,較簡單.12、B【解析】設(shè),則,若函數(shù)在x∈R上有大于零的極值點即有正根,當(dāng)有成立時,顯然有,此時.由,得參數(shù)a的范圍為.故選B考點:利用導(dǎo)數(shù)研究函數(shù)的極值二、填空題:本題共4小題,每小題5分,共20分。13、①【解析】根據(jù)幾何體展開圖可知①正四面體、②正四棱錐、③正八面體、④正方體,進而求其外接球半徑,并與比較大小,即可確定答案.【詳解】①由題設(shè),幾何體為棱長為的正四面體,該正四面體可放入一個正方體中,且正方體的棱長為,該正四面體的外接球半徑為,滿足要求;②由題設(shè),幾何體為棱長為的正四棱錐,如下圖所示:設(shè),連接,則為、的中點,因為四邊形是邊長為的正方形,則,所以,,所以,,所以,,,所以點為正四棱錐的外接球球心,且該球的半徑為,不滿足要求;③由題設(shè),幾何體為棱長為的正八面體,該正八面體可由兩個共底面,且棱長均為的正四棱錐拼接而成,由②可知,該正八面體的外接球半徑為,不滿足要求;④由題設(shè),幾何體為棱長為的正方體,其外接球半徑為,不滿足要求;故答案為:①.14、(答案不唯一)【解析】根據(jù)題意判斷數(shù)列特征,寫出一個符合題意的數(shù)列的通項公式即可.【詳解】因為數(shù)列是等比數(shù)列,數(shù)列是單調(diào)遞增數(shù)列,數(shù)列公比滿足,所以等比數(shù)列公比,且各項均為負(fù)數(shù),符合題意的一個數(shù)列的通項公式為.故答案為:(答案不唯一)15、【解析】由題意設(shè),,根據(jù)可得,從而,即可得出答案.【詳解】設(shè),由,得,由,得中的元素滿足,即,可得所以,由,所以所以,要使得數(shù)列的前n項和的最大值,即求出數(shù)列中所以滿足的項的和即可.即,得,則所以數(shù)列的前n項和的最大值為故答案為:147216、(答案不唯一)【解析】由條件確定該等比數(shù)列的首項的可能值,由此確定該數(shù)列的通項公式.【詳解】設(shè)數(shù)列的公比為,則,由已知可得,∴,所以,故可取,故滿足條件的等比數(shù)列的通項公式可能為,故答案為:(答案不唯一)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)利用的關(guān)系可求.(2)利用裂項相消法可求數(shù)列的前9項和【小問1詳解】由題意知當(dāng)時,;當(dāng)時,,適合上式所以【小問2詳解】則18、(1)(2)是;【解析】(1)由離心率和焦點三角形周長可求出,結(jié)合關(guān)系式得出,即可得出橢圓的方程;(2)由平行于軸特殊情況求出,即;當(dāng)平行于軸時,設(shè)過的直線為,聯(lián)立橢圓方程,令化簡得關(guān)于的二次方程,由韋達定理即可求解.【小問1詳解】由題可知,,解得,又,解得,故橢圓的標(biāo)準(zhǔn)方程為:;【小問2詳解】如圖所示,當(dāng)平行于軸時,恰好平行于軸,,,;當(dāng)不平行于軸時,設(shè),設(shè)過點的直線為,聯(lián)立得,令得,化簡得,設(shè),則,又,故,即.綜上所述,.19、(1);(2).【解析】(1)根據(jù)拋物線的定義以及拋物線通徑的性質(zhì)可得,從而可得結(jié)果;(2)設(shè)直線的方程為,代入,得,利用弦長公式,結(jié)合韋達定理可得的值,由點到直線的距離公式,根據(jù)三角形面積公式可得,從而可得結(jié)果.【詳解】(1)由拋物線的定義得到準(zhǔn)線的距離都是p,所以|AB|=2p=4,所以拋物線的方程為y2=4x(2)設(shè)直線l的方程為y=k(x-1),P(x1,y1),Q(x2,y2)因為直線l與拋物線有兩個交點,所以k≠0,得,代入y2=4x,得,且恒成立,則,y1y2=-4,所以又點O到直線l的距離,所以,解得,即【點睛】本題主要考查直線與拋物線的位置關(guān)系的相關(guān)問題,意在考查綜合利用所學(xué)知識解決問題能力和較強的運算求解能力,其常規(guī)思路是先把直線方程與圓錐曲線方程聯(lián)立,消元、化簡,然后應(yīng)用根與系數(shù)的關(guān)系建立方程,解決相關(guān)問題20、(1)6;(2),,【解析】(1)先得到二項展開式的通項,再根據(jù)第五項的二項式系數(shù)是第三項系數(shù)的4倍,建立方程求解.(2)根據(jù)(1)的通項公式求解.【詳解】(1)二項展開式的通項.依題意得,,所以,解得.(2)由(1)得,當(dāng),3,6時為有理項,故有理有,,.【點睛】本題主要考查二項式定理的通項公式,還考查了運算求解的能力,屬于基礎(chǔ)題.21、(1)2(2)當(dāng)時,沒有極值;當(dāng)時,極大值為,極小值為.【解析】(1)當(dāng)時,,可得:.,,得或,列出函數(shù)單調(diào)性表格,即可最大值;(2),令,得或,分別討論和,即可求得的極值.【詳解】(1)當(dāng)時,,所以.令,得或,列表如下:-2-11+0-0+極大值極小值由于,,所以函數(shù)在區(qū)間上的最大值為2.(2),令,得或.當(dāng)時,,所以函數(shù)在上單調(diào)遞增,無極值.當(dāng)時,列表如下:+0-0+極大值極小值函數(shù)的極大值為,極小值為.【點睛】本題主要考查根據(jù)導(dǎo)數(shù)求函數(shù)單調(diào)性和極值,解題關(guān)鍵是掌握導(dǎo)數(shù)求單調(diào)性的方法和極值定義,考查分析能力和計算能力,屬于中檔題.22、(1);(2)存在,.【解析】(1)根據(jù)給定條件求出橢圓長短半軸長即可代入計算作答.(2)當(dāng)直線l的斜率存在時,設(shè)出直線l的方程,與橢

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論