版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2025屆吉林省白山市長白實(shí)驗(yàn)中學(xué)高二上數(shù)學(xué)期末復(fù)習(xí)檢測試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知為虛數(shù)單位,復(fù)數(shù)是純虛數(shù),則()A. B.4C.3 D.22.已知直線和圓,則“”是“直線與圓相切”的().A.必要不充分條件 B.充分不必要條件C.充要條件 D.既不充分也不必要條件3.若函數(shù)的導(dǎo)函數(shù)為偶函數(shù),則的解析式可能是()A. B.C. D.4.用反證法證明“若a,b∈R,,則a,b不全為0”時,假設(shè)正確的是()A.a,b中只有一個為0 B.a,b至少一個不為0C.a,b至少有一個為0 D.a,b全為05.已知直線與直線平行,則實(shí)數(shù)a的值為()A.1 B.C.1或 D.6.中秋節(jié)吃月餅是我國的傳統(tǒng)習(xí)俗,若一盤中共有兩種月餅,其中5塊五仁月餅、6塊棗泥月餅,現(xiàn)從盤中任取3塊,在取到的都是同種月餅的條件下,都是五仁月餅的概率是()A B.C. D.7.在區(qū)間上隨機(jī)取一個數(shù),則事件“曲線表示圓”的概率為()A. B.C. D.8.若,則的值為()A.或 B.或C.1 D.-19.拋擲兩枚硬幣,若記出現(xiàn)“兩個正面”“兩個反面”“一正一反”的概率分別為,,,則下列判斷中錯誤的是().A. B.C. D.10.不等式的解集為()A.或 B.C. D.11.命題“”的否定是()A. B.C. D.12.中國歷法推測遵循以測為輔,以算為主的原則.例如《周髀算經(jīng)》里對二十四節(jié)氣的晷影長的記錄中,冬至和夏至的晷影長是實(shí)測得到的,其它節(jié)氣的晷影長則是按照等差數(shù)列的規(guī)律計(jì)算得出的.二十四節(jié)氣中,從冬至到夏至的十三個節(jié)氣依次為:冬至、小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種、夏至.已知《周髀算經(jīng)》中記錄某年的冬至的晷影長為13尺,夏至的晷影長是1.48尺,按照上述規(guī)律,那么《周髀算經(jīng)》中所記錄的立夏的晷影長應(yīng)為()A.尺 B.尺C.尺 D.尺二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)滿足:①是奇函數(shù);②當(dāng)時,.寫出一個滿足條件的函數(shù)________14.已知函數(shù)有三個零點(diǎn),則實(shí)數(shù)的取值范圍為___________.15.若命題“,不等式恒成立”為真命題,則實(shí)數(shù)a的取值范圍是________.16.已知一個四面體的每個頂點(diǎn)都在表面積為的球的表面上,且,,則__________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(1)證明;(2)設(shè),證明:若一定有零點(diǎn),并判斷零點(diǎn)的個數(shù)18.(12分)某校在全體同學(xué)中隨機(jī)抽取了100名同學(xué),進(jìn)行體育鍛煉時間的專項(xiàng)調(diào)查.將調(diào)查數(shù)據(jù)按平均每天鍛煉時間的多少(單位:分鐘)分成五組:,,,,,得到如圖所示的頻率分布直方圖.將平均每天體育鍛煉時間不少于60分鐘的同學(xué)定義為鍛煉達(dá)標(biāo),平均每天體育鍛煉時間少于60分鐘的同學(xué)定義為鍛煉不達(dá)標(biāo)(1)求a的值,并估計(jì)該校同學(xué)平均每天體育鍛煉時間的中位數(shù);(2)在樣本中,對平均每天體育鍛煉時間不達(dá)標(biāo)的同學(xué),按分層抽樣的方法抽取6名同學(xué)了解不達(dá)標(biāo)的原因,再從這6名同學(xué)中隨機(jī)抽取2名進(jìn)行調(diào)研,求這2名同學(xué)中至少有一名每天體育鍛煉時間(單位:分鐘)在內(nèi)的概率19.(12分)已知拋物線C的方程為:,點(diǎn)(1)若直線與拋物線C相交于A、B兩點(diǎn),且P為線段AB的中點(diǎn),求直線的方程.(2)若直線過交拋物線C于M,N兩點(diǎn),F(xiàn)為拋物線C的焦點(diǎn),求的最小值20.(12分)已知等比數(shù)列的首項(xiàng),公比,在中每相鄰兩項(xiàng)之間都插入3個正數(shù),使它們和原數(shù)列的數(shù)一起構(gòu)成一個新的等比數(shù)列.(1)求數(shù)列的通項(xiàng)公式;(2)記數(shù)列前n項(xiàng)的乘積為,試問:是否有最大值?如果是,請求出此時n以及最大值;若不是,請說明理由.21.(12分)在矩形中,是的中點(diǎn),是上,,且,如圖,將沿折起至:(1)指出二面角的平面角,并說明理由;(2)若,求證:平面平面;(3)若是線段的中點(diǎn),求證:直線平面;22.(10分)已知橢圓的左、右焦點(diǎn)分別為,,離心率為,過的直線與橢圓交于,兩點(diǎn),若的周長為8.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)為橢圓上的動點(diǎn),過原點(diǎn)作直線與橢圓分別交于點(diǎn)、(點(diǎn)不在直線上),求面積的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】化簡復(fù)數(shù)得,由其為純虛數(shù)求參數(shù)a,進(jìn)而求的模即可.【詳解】由純虛數(shù),∴,解得:,則,故選:C2、B【解析】首先求出直線與圓相切時的取值,再根據(jù)充分必要條件的定義判斷.【詳解】若直線與圓相切,則圓心到直線的距離,則,解得,所以“”是“直線與圓相切”的充分不必要條件.故選:B【點(diǎn)睛】本題考查直線與圓的位置關(guān)系,充分必要條件,重點(diǎn)考查計(jì)算,理解能力,屬于基礎(chǔ)題型.3、C【解析】根據(jù)題意,求出每個函數(shù)的導(dǎo)函數(shù),進(jìn)而判斷答案.【詳解】對A,,為奇函數(shù);對B,,為奇函數(shù);對C,,為偶函數(shù);對D,,既不是奇函數(shù)也不是偶函數(shù).故選:C.4、D【解析】把要證的結(jié)論否定之后,即得所求的反設(shè)【詳解】由于“a,b不全為0”的否定為:“a,b全為0”,所以假設(shè)正確的是a,b全為0.故選:D5、A【解析】根據(jù)兩直線平行的條件列方程,化簡求得,檢驗(yàn)后確定正確答案.【詳解】由于直線與直線平行,所以,或,當(dāng)時,兩直線方程都為,即兩直線重合,所以不符合題意.經(jīng)檢驗(yàn)可知符合題意.故選:A6、C【解析】分別求出取到3塊月餅都是同種月餅和取到3塊月餅都是五仁月餅的種數(shù),再根據(jù)概率公式即可得解.【詳解】解:由題意可得,取到3塊月餅都是同種月餅有種情況,取到3塊月餅都是五仁月餅有種情況,所以在取到的都是同種月餅的條件下,都是五仁月餅的概率是.故選:C.7、D【解析】先求出曲線表示圓參數(shù)的范圍,再由幾何概率可得答案.【詳解】由可得曲線表示圓,則解得或又所以曲線表示圓的概率為故選:D8、B【解析】求出函數(shù)的導(dǎo)數(shù),由方程求解即可.【詳解】,,解得或,故選:B9、A【解析】把拋擲兩枚硬幣的情況均列舉出來,利用古典概型的計(jì)算公式,把,,算出來,判斷四個選項(xiàng)的正誤.【詳解】兩枚硬幣,記為與,則拋擲兩枚硬幣,一共會出現(xiàn)的情況有四種,A正B正,A正B反,A反B正,A反B反,則,,,所以A錯誤,BCD正確故選:A10、A【解析】根據(jù)一元二次不等式的解法可得答案.【詳解】由不等式可得或不等式的解集為或故選:A11、C【解析】特稱命題的否定,先把存在量詞改為全稱量詞,再把結(jié)論進(jìn)行否定即可.【詳解】命題“”的否定是“”.故選:C12、B【解析】根據(jù)等差數(shù)列定義求得公差,再求解立夏的晷影長在數(shù)列中所對應(yīng)的項(xiàng)即可【詳解】設(shè)從冬至到夏至的十三個節(jié)氣依次為等差數(shù)列的前13項(xiàng),則所以公差為,則立夏的晷影長應(yīng)為(尺)故選:B二、填空題:本題共4小題,每小題5分,共20分。13、(答案不唯一)【解析】利用函數(shù)的奇偶性及其單調(diào)性寫出函數(shù)解析式即可.【詳解】結(jié)合冪函數(shù)的性質(zhì)可知是奇函數(shù),當(dāng)時,,則符合上述兩個條件,故答案為:(答案不唯一).14、【解析】由題意可得與的圖象有三個不同的交點(diǎn),經(jīng)判斷時不符合題意,當(dāng)時,時,兩個函數(shù)圖象有一個交點(diǎn),可得時與的圖象有兩個交點(diǎn),等價于與的圖象有兩個不同的交點(diǎn),對求導(dǎo),數(shù)形結(jié)合即可求解.【詳解】令可得,若函數(shù)函數(shù)有三個零點(diǎn),則可得方程有三個根,即與的圖象有三個不同的交點(diǎn),作出的圖象如圖:當(dāng)時,是以為頂點(diǎn)開口向下的拋物線,此時與的圖象沒有交點(diǎn),不符合題意;當(dāng)時,與的圖象只有一個交點(diǎn),不符合題意;當(dāng)時,時,與的圖象有一個交點(diǎn),所以時與的圖象有兩個交點(diǎn),即方程有兩個不等的實(shí)根,即方程有兩個不等的實(shí)根,可得與的圖象有兩個不同的交點(diǎn),令,則,由即可得,由即可得,所以在單調(diào)遞增,在單調(diào)遞減,作出其圖象如圖:當(dāng)時,,當(dāng)時,可得與的圖象有兩個不同的交點(diǎn),即時,函數(shù)有三個零點(diǎn),所以實(shí)數(shù)的取值范圍為,故答案為:【點(diǎn)睛】方法點(diǎn)睛:已知函數(shù)有零點(diǎn)(方程有根)求參數(shù)值(取值范圍)常用的方法:(1)直接法:直接求解方程得到方程的根,再通過解不等式確定參數(shù)范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)的值域問題加以解決;(3)數(shù)形結(jié)合法:先對解析式變形,進(jìn)而構(gòu)造兩個函數(shù),然后在同一平面直角坐標(biāo)系中畫出函數(shù)的圖象,利用數(shù)形結(jié)合的方法求解.15、【解析】,不等式恒成立,只要即可,利用基本不等式求出即可得出答案.【詳解】解:因?yàn)椋坏仁胶愠闪?,只要即可,因?yàn)?,所以,則,當(dāng)且僅當(dāng),即時取等號,所以,所以.故答案為:.16、【解析】由題意可得,該四面體的四個頂點(diǎn)位于一個長方體的四個頂點(diǎn)上,設(shè)長方體的長寬高為,由題意可得:,據(jù)此可得:,則球的表面積:,結(jié)合解得:.點(diǎn)睛:與球有關(guān)的組合體問題,一種是內(nèi)切,一種是外接.解題時要認(rèn)真分析圖形,明確切點(diǎn)和接點(diǎn)的位置,確定有關(guān)元素間的數(shù)量關(guān)系,并作出合適的截面圖,如球內(nèi)切于正方體,切點(diǎn)為正方體各個面的中心,正方體的棱長等于球的直徑;球外接于正方體,正方體的頂點(diǎn)均在球面上,正方體的體對角線長等于球的直徑.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)證明見解析,1個零點(diǎn).【解析】(1)求導(dǎo)同分化簡,構(gòu)造新函數(shù)判斷導(dǎo)數(shù)正負(fù)即可;(2)令g(x)=0,化簡方程,將問題轉(zhuǎn)化為討論方程解的個數(shù)問題.【小問1詳解】,設(shè),則,時,遞減,時,遞增,而,所以時,,所以;小問2詳解】有零點(diǎn),則有解,即有解,又,則只要,因?yàn)?,方程可以化為,現(xiàn)在證明有解,令,則,可知在遞減,在遞增,所以,因?yàn)?,所以,在?nèi)恒有,而在遞增,當(dāng)x=時,h()=,故根據(jù)零點(diǎn)存在性定理知在存在唯一零點(diǎn).所以有且只有一個零點(diǎn),所以有零點(diǎn),有一個零點(diǎn)【點(diǎn)睛】本題關(guān)鍵是是將方程零點(diǎn)問題轉(zhuǎn)化為方程解的問題,通過討論單調(diào)性和最值(極值)的正負(fù)即可判斷零點(diǎn)的有無和個數(shù).18、(1),中位數(shù)為64;(2).【解析】(1)由頻率和為1求參數(shù)a,根據(jù)中位數(shù)的性質(zhì),結(jié)合頻率直方圖求中位數(shù).(2)首先由分層抽樣求6名同學(xué)的分布情況,再應(yīng)用列舉法求概率.【詳解】(1)由題設(shè),,可得,∴中位數(shù)應(yīng)在之間,令中位數(shù)為,則,解得.∴該校同學(xué)平均每天體育鍛煉時間的中位數(shù)為64.(2)由題設(shè),抽取6名同學(xué)中1名在,2名在,3名在,若1名在為,2名在為,3名在為,∴隨機(jī)抽取2名的可能情況有共15種,其中至少有一名在內(nèi)的共12種,∴這2名同學(xué)中至少有一名每天體育鍛煉時間(單位:分鐘)在內(nèi)的概率為.19、(1)(2)16【解析】(1)設(shè),代入拋物線方程由點(diǎn)差法可得答案;(2)設(shè)直線為:,,與拋物線方程聯(lián)立,利用韋達(dá)定理和基本不等式可得答案.【小問1詳解】設(shè)則,由兩式相減可得:,,即直線的方程為.【小問2詳解】設(shè)直線為:,由可得,,,,又因?yàn)辄c(diǎn)坐標(biāo)為,所以,從而,,所以當(dāng)且僅當(dāng)時,有最小值1620、(1)(2)當(dāng)或時,有最大值.【解析】(1)利用等比數(shù)列通項(xiàng)公式求解即可;(2)求出數(shù)列的前n項(xiàng)的乘積為,利用二次函數(shù)的性質(zhì)求最值即可.【小問1詳解】由已知得,數(shù)列首項(xiàng),,設(shè)數(shù)列的公比為,即∴即,【小問2詳解】,即當(dāng)或5時,有最大值.21、(1)為二面角的平面角,理由見解析(2)證明見解析(3)證明見解析【解析】(1)根據(jù),結(jié)合二面角定義得到答案.(2)證明平面得到,得到平面,得到證明.(3)延長,交于點(diǎn),連接,證明即可.【小問1詳解】連接,則,,故為二面角的平面角.【小問2詳解】,,,故平面,平面,故,又,,故平面,平面,故平面平面.【小問3詳解】延長,交于點(diǎn),連接,易知,故故是的中點(diǎn),是線段的中點(diǎn),故,平面,且平面,故直線平面.22、(1);(2).【解析】(1)根據(jù)周長可求,再根據(jù)離心率可求,求出后可求橢圓的方程.(2)當(dāng)直線軸時,計(jì)算可得的面積的最大值為,直線不垂直軸時,可設(shè),聯(lián)立直線方程和橢圓
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度安置住房產(chǎn)權(quán)分割買賣合同3篇
- 2025年度智能電網(wǎng)建設(shè)與運(yùn)營承包合同含新能源并網(wǎng)與電力調(diào)度4篇
- 2025年度特種貨車承包運(yùn)營合同4篇
- 2025年度?;奋囕v物流運(yùn)輸合同4篇
- 2025年度幼兒園教室窗簾安全性與環(huán)保性檢測合同4篇
- 2025年度智能化城市景觀承包設(shè)計(jì)工程合同4篇
- 2024試讀生權(quán)益保障合同:學(xué)生試用條款明細(xì)版B版
- 2025年度智能充電樁設(shè)備集成采購合同4篇
- 2025年度二零二五年度竹林資源承包與生態(tài)旅游開發(fā)合同3篇
- 2025年度儲藏室租賃與貨物出入庫管理服務(wù)協(xié)議3篇
- 2019級水電站動力設(shè)備專業(yè)三年制人才培養(yǎng)方案
- 室內(nèi)裝飾裝修施工組織設(shè)計(jì)方案
- 洗浴中心活動方案
- 送電線路工程施工流程及組織措施
- 肝素誘導(dǎo)的血小板減少癥培訓(xùn)課件
- 韓國文化特征課件
- 抖音認(rèn)證承諾函
- 清潔劑知識培訓(xùn)課件
- 新技術(shù)知識及軍事應(yīng)用教案
- 高等數(shù)學(xué)(第二版)
- 肺炎喘嗽的中醫(yī)護(hù)理常規(guī)
評論
0/150
提交評論