吉林省公主嶺市2025屆高二數學第一學期期末質量跟蹤監(jiān)視試題含解析_第1頁
吉林省公主嶺市2025屆高二數學第一學期期末質量跟蹤監(jiān)視試題含解析_第2頁
吉林省公主嶺市2025屆高二數學第一學期期末質量跟蹤監(jiān)視試題含解析_第3頁
吉林省公主嶺市2025屆高二數學第一學期期末質量跟蹤監(jiān)視試題含解析_第4頁
吉林省公主嶺市2025屆高二數學第一學期期末質量跟蹤監(jiān)視試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

吉林省公主嶺市2025屆高二數學第一學期期末質量跟蹤監(jiān)視試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知向量,,則等于()A. B.C. D.2.在平形六面體中,其中,,,,,則的長為()A. B.C. D.3.若變量x,y滿足約束條件,則目標函數最大值為()A.1 B.-5C.-2 D.-74.若直線與曲線有兩個公共點,則實數的取值范圍為()A. B.C. D.5.如圖,已知二面角平面角的大小為,其棱上有、兩點,、分別在這個二面角的兩個半平面內,且都與垂直.已知,,則()A. B.C. D.6.已知直線與直線平行,則實數a值為()A.1 B.C.1或 D.7.若直線過點(1,2),(4,2+),則此直線的傾斜角是()A.30° B.45°C.60° D.90°8.已知雙曲線(,)的左,右焦點分別為,.若雙曲線右支上存在點,使得與雙曲線的一條漸近線垂直并相交于點,且,則雙曲線的漸近線方程為()A. B.C. D.9.已知點到直線:的距離為1,則等于()A. B.C. D.10.曲線:在點處的切線方程為A. B.C. D.11.已知直線l1:mx-2y+1=0,l2:x-(m-1)y-1=0,則“m=2”是“l(fā)1平行于l2”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件12.已知實數x,y滿足,則的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某校為了解學生學習的情況,采用分層抽樣的方法從高一人、高二人、高三人中,抽取人進行問卷調查.已知高一被抽取的人數為,那么高二被抽取的人數為__.14.已知一個四面體的每個頂點都在表面積為的球的表面上,且,,則__________15.已知方程,若此方程表示橢圓,則實數的取值范圍是________;若此方程表示雙曲線,則實數的取值范圍是________.16.已知為坐標原點,等軸雙曲線的右焦點為,點在雙曲線上,由向雙曲線的漸近線作垂線,垂足分別為、,則四邊形的面積為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線,直線與交于兩點且(為坐標原點)(1)求拋物線的方程;(2)設,若直線的傾斜角互補,求的值18.(12分)已知在△中,角A,B,C的對邊分別是a,b,c,且.(1)求角C的大??;(2)若,求△的面積S的最大值.19.(12分)在下面兩個條件中任選一個條件,補充在后面問題中的橫線上,并完成解答.條件①:展開式前三項的二項式系數的和等于37;條件②:第3項與第7項的二項式系數相等;問題:在二項式的展開式中,已知__________.(1)求展開式中二項式系數最大的項;(2)設,求的值;(3)求的展開式中的系數.20.(12分)已知函數,其中,.(1)當時,求曲線在點處切線方程;(2)求函數的單調區(qū)間.21.(12分)如圖,四棱錐中,,.(1)證明:平面;(2)在線段上是否存在一點,使直線與平面所成角的正弦值等于?22.(10分)在①,②,③這三個條件中任選一個補充在下面問題中,并解答下列題目設首項為2的數列的前n項和為,前n項積為,且(1)求數列的通項公式;(2)求的值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據題意,結合空間向量的坐標運算,即可求解.【詳解】由,,得,因此.故選:C.2、B【解析】根據空間向量基本定理、加法的運算法則,結合空間向量數量積的運算性質進行求解即可.【詳解】因為是平行六面體,所以,所以有:,因此有:,因為,,,,,所以,所以,故選:B3、A【解析】作出不等式組對應的平面區(qū)域,利用目標函數的幾何意義,進行求最值即可【詳解】解:由得作出不等式組對應的平面區(qū)域如圖(陰影部分平移直線,由圖象可知當直線,過點時取得最大值,由,解得,所以代入目標函數,得,故選:A4、D【解析】由題可知,曲線表示一個半圓,結合半圓的圖像和一次函數圖像即可求出的取值范圍.【詳解】由得,畫出圖像如圖:當直線與半圓O相切時,直線與半圓O有一個公共點,此時,,所以,由圖可知,此時,所以,當直線如圖過點A、B時,直線與半圓O剛好有兩個公共點,此時,由圖可知,當直線介于與之間時,直線與曲線有兩個公共點,所以.故選:D.5、C【解析】以、為鄰邊作平行四邊形,連接,計算出、的長,證明出,利用勾股定理可求得的長.【詳解】如下圖所示,以、為鄰邊作平行四邊形,連接,因為,,則,又因為,,,故二面角的平面角為,因為四邊形為平行四邊形,則,,因為,故為等邊三角形,則,,則,,,故平面,因為平面,則,故.故選:C.6、A【解析】根據兩直線平行的條件列方程,化簡求得,檢驗后確定正確答案.【詳解】由于直線與直線平行,所以,或,當時,兩直線方程都為,即兩直線重合,所以不符合題意.經檢驗可知符合題意.故選:A7、A【解析】求出直線的斜率,由斜率得傾斜角【詳解】由題意直線斜率為,所以傾斜角為故選:A8、B【解析】利用漸近線方程和直線解出Q點坐標,再由得P點坐標,代入雙曲線方程得到a、b、c的齊次式可解.【詳解】如圖,因為與漸近線垂直所以的斜率為,方程為解的Q的坐標為設P點坐標為則,因為,所以,得點P坐標為,代入得:所以,即所以漸近線方程為故選:B.9、D【解析】利用點到直線的距離公式,即可求得參數的值.【詳解】因為點到直線:的距離為1,故可得,整理得,解得.故選:.10、A【解析】因為,所以曲線在點(1,0)處的切線的斜率為,所以切線方程為,即,選A11、C【解析】利用兩直線平行的等價條件求得m,再結合充分必要條件進行判斷即可.【詳解】由直線l1平行于l2得-m(m-1)=1×(-2),得m=2或m=-1,經驗證,當m=-1時,直線l1與l2重合,舍去,所以“m=2”是“l(fā)1平行于l2”的充要條件,故選C.【點睛】本題考查兩直線平行的條件,準確計算是關鍵,注意充分必要條件的判斷是基礎題12、B【解析】實數,滿足,通過討論,得到其圖象是橢圓、雙曲線的一部分組成的圖形,借助圖象分析可得的取值就是圖象上一點到直線距離范圍的2倍,求出切線方程根據平行直線距離公式算出最小值,和最大值的極限值即可得出答案.【詳解】因為實數,滿足,所以當時,,其圖象是位于第一象限,焦點在軸上的雙曲線的一部分(含點),當時,其圖象是位于第四象限,焦點在軸上的橢圓的一部分,當時,其圖象不存在,當時,其圖象是位于第三象限,焦點在軸上的雙曲線的一部分,作出橢圓和雙曲線的圖象,其中圖象如下:任意一點到直線的距離所以,結合圖象可得的范圍就是圖象上一點到直線距離范圍的2倍,雙曲線,其中一條漸近線與直線平行,通過圖形可得當曲線上一點位于時,取得最小值,無最大值,小于兩平行線與之間的距離的倍,設與其圖像在第一象限相切于點,由因為或(舍去)所以直線與直線的距離為此時,所以的取值范圍是故選:B【點睛】三種距離公式:(1)兩點間的距離公式:平面上任意兩點間的距離公式為;(2)點到直線的距離公式:點到直線的距離;(3)兩平行直線間的距離公式:兩條平行直線與間的距離.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用分層抽樣可求得的值,再利用分層抽樣可求得高二被抽取的人數.【詳解】高一年級抽取的人數為:人,則,則高二被抽取的人數,故答案為:.14、【解析】由題意可得,該四面體的四個頂點位于一個長方體的四個頂點上,設長方體的長寬高為,由題意可得:,據此可得:,則球的表面積:,結合解得:.點睛:與球有關的組合體問題,一種是內切,一種是外接.解題時要認真分析圖形,明確切點和接點的位置,確定有關元素間的數量關系,并作出合適的截面圖,如球內切于正方體,切點為正方體各個面的中心,正方體的棱長等于球的直徑;球外接于正方體,正方體的頂點均在球面上,正方體的體對角線長等于球的直徑.15、①.②.【解析】分別根據橢圓、雙曲線的標準方程的特征建立不等式即可求解.【詳解】當方程表示橢圓時,則有且,所以的取值范圍是;當方程表示雙曲線時,則有或,所以的取值范圍是.故答案為:;16、##【解析】求出雙曲線的方程,可求得雙曲線的兩條漸近線方程,分析可知四邊形為矩形,然后利用點到直線的距離公式以及矩形的面積公式可求得結果.【詳解】因為雙曲線為等軸雙曲線,則,,可得,所以,雙曲線的方程為,雙曲線的漸近線方程為,則雙曲線的兩條漸近線互相垂直,則,,,所以,四邊形為矩形,設點,則,不妨設點為直線上的點,則,,所以,.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)利用韋達定理法即求;(2)由題可求,,再結合條件即得.【小問1詳解】設,,由,得,故,由,可得,即,∴,故拋物線的方程為:;【小問2詳解】設的傾斜角為,則的傾斜角為,∴由,得,∴,∴,同理,由,得,∴,即,故.18、(1);(2).【解析】(1)由正弦定理、和角正弦公式及三角形內角的性質可得,進而可得C的大??;(2)由余弦定理可得,根據基本不等式可得,由三角形面積公式求面積的最大值,注意等號成立條件.【小問1詳解】由正弦定理知:,∴,又,∴,則,故.【小問2詳解】由,又,則,∴,當且僅當時等號成立,∴△的面積S的最大值為.19、(1)答案見解析(2)0(3)560【解析】(1)選擇①,由,得,選擇②,由,得;(2)利用賦值法可求解;(3)分兩個部分求解后再求和即可.【小問1詳解】選擇①,因為,解得,所以展開式中二項式系數最大的項為選擇②,因為,解得,所以展開式中二項式系數最大的項為【小問2詳解】令,則,令,則,所以,【小問3詳解】因為所以的展開式中含的項為:所以展開式中的系數為560.20、(1);(2)答案見解析.【解析】(1)當時,,求出函數的導函數,再求出,,再利用點斜式求出切線方程;(2)首先求出函數的導函數,再對參數分類討論,求出函數的單調區(qū)間;【詳解】解:(1)當時,,所以,所以,,所以切線方程為:,即:(2)函數定義域為,,因為,①當時,在上恒成立,所以函數的單調遞增區(qū)間為,無單調遞減區(qū)間;②當時,由得,由得,所以函數的單調遞增區(qū)間為,單調遞減區(qū)間為【點睛】本題考查導數的幾何意義,利用導數研究含參函數的單調區(qū)間,屬于基礎題.21、(1)詳解解析;(2)存在.【解析】(1)利用勾股定理證得,結合線面垂直的判定定理即可證得結論;(2)以A為原點建立空間直角坐標系,設點,,求得平面的法向量,利用已知條件建立關于的方程,進而得解.【小問1詳解】取中點為,連接,在中,,,,又,,所以,又,,而,所以,又,,,又,,平面.【小問2詳解】以A為坐標原點,以為x軸,為y軸,為z軸建立空間直角坐標系,則,,,,設點,因為點F在線段上,設,,,設平面的法向量為,,,則,令,則,設直線CF與平面所成角為,,解得或(舍去),,此時點F是的三等分點,所以在線

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論