版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
IQVIA
TECHNOLOGIES
ExecutiveSummary
ApplyingAIinToday’s
RealityofQARAProcesses
AIinMedTechandpracticalrealitiesinQARA
ERDITGREMI,DirectorRegulatoryAffairs,Philips
DENISEMEADE,HealthcareandLifesciencesTechnologyLeader,Microsoft
RAJESHMIRSA,Principal,LifeSciencesQualityandRegulatoryServicesLeader,KPMGLLPCARLOSLUGO,VicePresidentofGlobalProductSafety&Surveillance,Philips
DONSOONG,SeniorDirectorandGeneralManager,QualityManagementSolutions,IQVIATechnologiesLORIELLIS,HeadofInsights,BioSpace(Moderator)
Tableofcontents
Keytakeaways1
Overview1
Context1
BeforetalkingaboutAI,wemustunderstandtheAIplayingfield1
ThelifesciencesandhealthcareindustriesintheU.S.arebehindothercountriesand
industriesinAIadoption2
Thetechnologyisonlyasgoodasyourdata2
Cleandatastartswithvalidation,buthandlingreal-worlddata(RWD)ismessy3
OrganizationsareeducatingQARAprofessionalstounderstandAIandpreparingfor
thefuture3
Conclusion4
Abouttheauthor5
Keytakeaways
?BeforetalkingaboutAI,wemustunderstandtheAI
playingfield.
?ThelifesciencesandhealthcareindustriesintheU.S.arebehindothercountriesandindustriesinAIadoption.
?Thetechnologyisonlyasgoodasyourdata.
?Cleandatastartswithvalidation,buthandlingreal-
worlddata(RWD)ismessy.
?Organizationsareeducatingqualityassuranceandregulatoryaffairs(QARA)specialiststounderstandAIandpreparingforthefuture.
Overview
Thegloballifesciencesindustryhasbeenslowto
adoptAI,particularlygenerativeAI(GenAI).AsGenAIbecomesmorewidelyadopted,QARAprofessionalsfacechallengesinthespaceandinhowitisappliedtoQualityandRegulatoryprocesses,whichrequiresanunderstandingofAItosuccessfullynavigate
datacleansing.
Context
QARAprofessionalsneedtocollaboratewithother
professionalstonavigatethechallengesthatAIbringsandreapthetechnology’sbenefitstoimprovepatientoutcomesandcommercialperformance.
BeforetalkingaboutAI,wemustunderstandtheAI
playingfield
ThepaneldiscussionbeganwithDeniseMeade,
healthcareandlifesciencestechnologyleaderat
Microsoft,settingilluminatingtheAIplayingfield
fortheaudience.SheexplainedthatAIisabroad
category.Machinelearning(ML)discussionstypicallyinvolvetheneedtotrain,testandreleasebasedonlargedatasetswhilelargelanguagemodels(LLMs),whicharealreadytrained,needtobegroundedin
data.ShehighlightedthatGenAIhashadagiantleapforwardinthelastfewyears.
“Toputitintoperspective,ittook
Netflixthreeandhalfyearstoreachonemillionusers.IttookgenerativeAIfivedays.”
—DeniseMeade,HealthcareandLifesciencesTechnologyLeader,Microsoft
TherearetworeasonshowquicklyGenAIwasadopted,Meadeexplained:accessibilityandvalue.“Essentiallyacoupleofcompaniestookabigleapforwardby
investinginitsotherestofusdonotneedtotraineverytimeyouuseLLMS,suchasChatGPT.Itcanbeappliedquicklyandeasilytogetinformation.”
Meadecautionedthatusersneedtohavesome
understandingofhowGenAIworksandhowtouseiteffectively.However,thereisadifferencebetweenLLMsandsmalllanguagemodels(SLMs),andwhatisbeingdonewithtraditionalAIcommonlyusedin
digitalmedicaldevices,roboticsandultrasoundtechnology.
“Withthesemodels,youaretakingwhathasalreadybeentrainedandgroundingitinyourowndata,”
Meadeexplained.“Abigimportantpartisthatdata
isaportionandsuperimportanttotraininmachine
learning.ButforGenAI,itismoreimportanttogroundthedataorgroundtheanswersinthedatathatyou
have.Youdon’tneedtotrainthem.”
|1
Thelifesciencesand
healthcareindustriesin
theU.S.arebehindother
countriesandindustriesinAIadoption
AspointedoutbothbyPhilips’ErditGremi,directorofregulatoryaffairs,andCarlosLugo,thecompany’svicepresidentofglobalproductsafety&surveillance,the
lifesciencesandhealthcareindustriesarebehindin
AIadoption.
“AlthoughwesaythatUnitedStateslifesciencesandhealthcareindustrysayisadvancedininnovationandtechnology,weareextremelybehindtherestoftheworldandotherindustries,”Lugoexplained.“AsmuchasIunderstandwewanttocontinuetobeopento
usingartificialintelligence,there’sstillthatregulatorystop.Ican’teventellyouhowoftenIheardFDAsay,‘Weloveit.Wewanttolearnmoreaboutit.’Westill
needadecidingfactor.Westillneedthathumaninteractiontosayyesorno.”
WhiletheFDAishesitanttoadoptAI,regulatorsin
othercountriesarenot.Australia’sTherapeuticGoodsAdministration(TGA)hasbeensteadilyincreasingitsadoptionofAIandBigPharmaareapproachingPhilipstopartnerinthespace.
AspointedoutbyGremi,LLMsandAIingeneralrequireafundamentallydifferentproductdesignapproach,onenotbasedontraditionalrolesorhierarchicalif-thenstatements.
“Howdoyoumakesurethatthe
datathatyouhaveinputintothisAIorintothismodelaretruly
representativeofallofthetypesofpatientsorcasesthatyouwillseethroughouttheentirelifetimeofthisproduct?”
—ErditGremi,DirectorRegulatoryAffairs,Philips
Instead,regulatorsandproductdesignersneedtoconsiderotherchallenges.
“Areyoustatisticallysoundinthatjudgment,andhaveyouacquireditsufficientlysothatsomethingthat
youmissedtodayinyourvaluationmodel,oryourvalidationsetdoesn’tbecometheadverseeventsayearfromnow?”Gremimused.
Thetechnologyisonlyasgoodasyourdata
Aspreviouslymentioned,GenAIandLLMsarealreadytrainedbutneedtobegroundedindata.ThisiswhereQARAprofessionalsneedtobesavvyenoughto
understandthedataanddatasources.DonSoong,
seniordirectorandgeneralmanagerofquality
managementsolutionsatIQVIA,suggestedthatQARAprofessionalsanddatascientistscollaborate.“Thedatascientistisgoingtounderstandallthetechniquesof
cleansingdata,buttheQARAisgoingtounderstandthenuancesinthedata,sotheymustpartner.”
PhilipshasQARAanddatascientistsinthesame
departmenttopromotecollaborationandreduce
downtime.Withthesetwotypesofexpertiseworkingtogether,researcherscangainatrueunderstandingofthedata,thedemographics,geographyandotherelementsthatbiasthedata.Tomitigatethatbias
throughcleansing,thetwodepartmentsbalancethedatasotherearethesamenumberofparameters
percategory,whichwillgiveafairresponsewhenthealgorithmsrun.
RajeshMirsa,principaloflifesciencesqualityand
regulatoryservicesleaderatKPMGLLP,wasnot
surprisedthatthediscussionturnedtowardsdata
quality.“I’vebeendoingthisforcloseto30yearsandwehavebeenhearingthesamethingforlast30years,thedataqualityisaproblem.Nothinghaschangedthelast30years.”Mirsabelievesthattheindustryneedstorethinkitsstrategy,puttinginplaceapproachesthatwillgeneratedataofsufficientquality.“Dataisnota
staticthing.Itchanges.”
2|ApplyingAIinToday’sRealityofQARAProcesses
Cleandatastartswith
validation,buthandlingReal-WorldData(RWD)ismessy
ToLugo,thekeyisdatavalidation.“Weknowthatdatamaynotbe100%pure,butcanwevalidatewhatwe
haveandmoveforward?”Beingabletoaskandanswer
thisquestionensurestherightqualitydecisions
aremade.Gremiaddedthatdataacquisitionexerciseistrulyidealbutnotalwaysfeasible.Thebest
availabletypeofdataisreal-worlddata(RWD),asitisrepresentativeofwhatthealgorithmormodelbeingdevelopedisgoingtobeencounteringintheworld.“Relyingonreal-worlddataandunderstandingwhatyoucansiftthroughandalreadyhaveavailablein
somewaysisactuallymorerepresentativethanatrueclinicalvalidationofaprospectivestudybecauseitishappeninginclinics,”Gremiexplained.
Mirsaemphasizedthatcorrectdataarecriticalwhendealingwithcomplaintsorotherspecifictasks.In
addition,hesaidthatthereisacertainamountofacceptableriskwhendealingwithdatasinceitwillneverbe100%pure.Heexplainedthequestionsheproposestohisteamsandclients.
“WhatisthepurposeofthedatathatI’mtryingtodoifI’musingforsomesortofalgorithmicmodeling?
WhatsortofhypothesisamItryingtocreate?”In
somecases,hesaid,“Idon’tneed100%correctdata;Icanlivewith70%or80%.ThenItakeoutthe20%or
30%andoutliersIbelievearenotcorrect.Iwillgettothesamehypothesisofwhatismypatternislookingfor.”Whendesigningapattern,hesaidheaddressesthedatainconsistenciesbytakingthemoutofthe
calculationswhilebuildingthemodel.
RWDhasthepotentialtobecollectedinamore
pristinemanner.Meadespokefromexperiencewith
companiesthatcometoMicrosofttofixthecollectionofRWDoranydata.“Oftentimeswhatweendupdoingattheendoftheprojectisactuallystartingmoving
folksfrompaperprocessesjusttodigitalprocesses,”Meadenoted.“Itisamazinghowmanytimeswhenyougointoafactoryandpeopleareusingapenandpapertocollectdata,whichisthenlatertranscribedinto
asystem.”
OrganizationsareeducatingQARAprofessionalsto
understandAIandpreparingforthefuture
ThebiggestchallengeishowtokeepinfrontofAI.
Lugonotedthatconferencesandprivateeventsare
keytohelpingtheindustryadoptAI.Ascompanies
enterthespacemoreaggressive,Lugosaidhefinds
thatitisdifficulttoopendoorsandlowerwalls
becauselifesciencesareguardedaswholeinthe
UnitedStates,unliketherestoftheworld,whenit
comestoAIadoption.Theprocessisslow.However,
hedidnoteincreasingcybersecurityconcernsas
aconsequenceoftechnologicaladvancesincethe
discussiontookplaceduringtheCrowdStrikeincident,whichcreatedflightissuesforbothpanelistsand
audiencemembers.Atthetimeofthediscussion,therewerestill600flightscanceledthedaypriorbyDelta.
Mirsasuggestedthatthemostpressingconcernis
theworkforce.Inthecurrentenvironment,QARA
professionals’workloadconsistsof30%to40%
paperwork.Hesuggestedthatthisis15to20years
behindthetechnologicalcurvecomparedtoother
industries.ThisisindirectoppositiontoFDA’s
approvalof150AI-basedproductswithinthelasteightmonths,whichbringsittoatotalofover700productsbeingapprovedtodate.Whilestillbehindother
industries,QARAprocessesthataredependenton
paperworkslowdowntheprocessandwillnotbeabletoeffectivelyhandletheinfluxofinformationastheindustrycontinuestoblendAIintoscience.
Additionally,thefutureworkforcehasbeenraisedonAIsopaperprocessesmaybeforeigntothem.Mirsaquestioned,“Howdowetraintheworkforce?And
that’saveryimmediateproblemtodayforcompaniesontheworkforceperspective.”Fortheindustryto
moveforward,theworkplacemustmoveawayfrompaper.
LugofurtheremphasizedMirsa’spoint.Becausetheupcomingworkforcehasbeenraisedwithtechnology,trainingbecomesdifficultwhenworkingwith
newhires.Onekeyexamplehegavewasthrough
|3
communication.Lugoexplained,“IfI’mtryingtogetoneofmyengineerswhoIjustrecentlyhired,I’m
calling,callingandcalling.Heorsheneverpicksupthephone,butthemomentIsendatextoranemail,theresponseisimmediate.”ThequestionforLugoishowdoyoutrainanewhirewiththatcommunicationstyle.ItisagapheisactivelyworkingonfiguringoutforPhilips.
Soongfocusedonthecostefficiencyconcernsforleadership.
“Theindustryisdrivingustobemorecostefficient.Domorewithless,soleadershipwantsAIto
beused.”
Conclusion
QARAprocessesandproceduresneedtoevolvetoadopttechnology.Thelifesciencesandhealthcare
industryinUnitedStatesisbehindbothother
industriesandcountriesinadoption.However,there
isclearlyaneedforAI.Theupcomingworkforceis
comfortablewithAIbutwillneedtraining.ThistrainingcanonlybecompletedbythoseQARAprofessionals
whoareabletoclosetheknowledgegapbetweenthecurrentpaperprocesswiththetechnologicalprocessesofthefuture.Ultimately,theadoptionofAIintoQARAprocessesha
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 馬鞍山學(xué)院《學(xué)習(xí)筑夢科技中國夢》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024年三方借款協(xié)議書附借款合同履行監(jiān)督與報告義務(wù)3篇
- 2024年度雙方網(wǎng)絡(luò)安全合作協(xié)議書2篇
- 2024年度云計算環(huán)境下電子支付安全協(xié)議及技術(shù)優(yōu)化合同3篇
- 2025知識產(chǎn)權(quán)合同范本專賣店特許合同
- 2025年伊春道路貨物運輸駕駛員考試
- 2024年度原材料采購與回購合同協(xié)議3篇
- 單位人力資源管理制度精彩匯編
- 2024年標(biāo)準(zhǔn)技術(shù)合作合同書樣本版B版
- 2025機場配電箱合同
- JGJT334-2014 建筑設(shè)備監(jiān)控系統(tǒng)工程技術(shù)規(guī)范
- 2024年網(wǎng)格員考試題庫1套
- 生命科學(xué)前沿技術(shù)智慧樹知到期末考試答案章節(jié)答案2024年蘇州大學(xué)
- 2023年小兒推拿保健師考試真題試卷(含答案)
- 高血壓護理常規(guī)課件
- 心臟介入手術(shù)談話技巧
- 海南省三亞市吉陽區(qū)2022-2023學(xué)年六年級上學(xué)期期末數(shù)學(xué)試卷
- 辦公樓消防改造工程環(huán)境保護措施
- 2023-2024學(xué)年高一下學(xué)期家長會 課件
- 溯源與解讀:學(xué)科實踐即學(xué)習(xí)方式變革的新方向
- 班克街教育方案
評論
0/150
提交評論