邊緣計算演進-Evolving Edge Computing 2024_第1頁
邊緣計算演進-Evolving Edge Computing 2024_第2頁
邊緣計算演進-Evolving Edge Computing 2024_第3頁
邊緣計算演進-Evolving Edge Computing 2024_第4頁
邊緣計算演進-Evolving Edge Computing 2024_第5頁
已閱讀5頁,還剩29頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

WHITEPAPER

EvolvingEdgeComputing

Contents

1WhyEvolveEdgeComputing?

2Vision

2.1EdgeVersusCloud

2.2Why‘CloudLike’inEdgeComputing?

2.3What’schanginginIoT/EdgeComputing?

2.4ChallengestoOvercome

2.5Summary

3.6Bibliography

WHITEPAPER2

1WhyEvolveEdgeComputing?

Edgecomputingisatermthathasbeeninuseforalongtime.Throughout

theindustry,therearemanyreferencestoedgeandmanypre-conceptions

aboutwhatthatmightmean.Theterm‘edge’istypicallyusedfordevicesthatexistontheedgeofanetworkandcancoveraplethoraofusecases,rangingfromtherouterinyourhouse,asmartvideocamerasurveyingaparkinglot,toacontrolsystemmanagingarobotonaproductionlineinasmartfactory.Itishardlysurprisingthenthat‘edge’isaconfusingtermwithsomanyuse

caseexamplestochoosefrom.

So,whatishappeningthatmeansthatArmiscallingforanevolutioninedgecomputing?Thispaperexaminestheconvergenceofseveralmarkettrends

thatpresentnewchallengesandopportunitiesinthisspaceandrequireustorethinkthewayforward.

Firstly,edgedevicesarebecomingconnectedtocloudservicessuchthattheyaregenerallylocatedclosetothesourceofdata.Inturn,theygenerateinsightthatfeedsnewdigitaltransformationservicesthatarehostedinthecloud.

Inthiscontext,wedefine‘thecloud’asbeingacentrallylocatedcomputeresource,typicallydatacenterbased,runninghigh-levelbusinessservices.

Theseservicesconsumeinsight(data)fromavastnumberofremotely

locatededgedevices.Asthiscloud-connectedtrendaccelerates,weseea

deepeningofthe‘relationship’betweencloudandedgedevices,suchthat

thecentrallylocatedservicesconsumingthedatahaveanever-increasing

amountofcontrolovertheedgedeviceswiththeaimofdrivingeverhigh

levelsofefficiencyinhowthesenetworksaredeployed.Althoughtheedgeisdistinctlydifferenttocloudcomputeresources,weexpecttoseedevelopersincreasinglybeingabletodevelopapplicationsatahighlevelthatare‘pushedout’totheedge,enablingdatainsightstoberefinedandtunedforvery

specificusecases.

WHITEPAPER3

Forthepurposesofthispaper,wefocuson‘frictionlessdevelopment’

asatermthatembraceshigh-levelworkloadswithhardwareabstraction,whileallowingthedevelopertoexploitthefullbenefitsoftheunderlyinghardware.

EvolvingEdgeComputing-EssentialIngredients

Developersneedtofocusonvalueadd,embracestandardsandmaximizere-use

‘Cloud-like’

Agileinnovationwithrapid

re-useacrossdevices.

Securityatscale

Trusteddevicesandtrusted

SWwithsecurelifecycleand

regulatorycompliance.

ModularSW

Complexmulti-vendorSWstacksthatworktocommonbestprectices.

Heterogeneity

Hardwareefficiencytuned

tospecificusecases.

Collaborative

Newmodelsof

collaborationtounlockthepotentialofedgecompute.

Eliminateneedlessfragmentation

Rightbalanceof

standardsandinnovation.

Eliminateunnecessarynon-differentiating

perplatformoverheadson-Arm.

Eachpartofthevaluechainfocuseson

value-addanddifferentiation.

FIG.1

EvolvingEdgeComputing–EssentialIngredients

Secondly,weseeahugeshiftinthemarkettodrivinginsightthrough

artificialintelligence.Typically,thismeanspushingAImodelsouttoedgedevicessotheycandelivertheinsightneededforbusiness-levelservices.

Finally,thesedevicesneedtobemanagedinasecureway.Asdescribedlaterinthepaper,emergingregulationsmandatesoftwaresecurityand

guaranteedupdates,makingitincreasinglyimportanttoconsiderthefullsecuritymodelofedgecomputing.Whendeployedatscale,edgedevicesareperformingacriticalroleinthedeliveryofhigh-valueservicesand

makingthemmorevulnerabletobadactormanipulation.

WHITEPAPER4

Secureidentityandsecurelifecyclemanagementarecriticalconsiderationsforabest-practiceedgecomputingapproach.

Inthecontextofthispaper,edgecomputingandsubsequently,edgeAI,

typicallyencompassescompute-richdevicesthatcanbeprogrammedin

high-levelabstractedlanguagesthatmakethemaccessibletoabroadrangeofdevelopers.FromanArmarchitectureperspective,thiscurrentlyrelies

onArmCortex-Aastheprincipalprocessingelement.Theabilitytosupportcompute-intensiveworkloadsandrichoperatingsystems,includingLinux,allowsproductsbasedonCortex-Abasedtoaddressthewidestpossible

setofusecases.

WecanexpectmanyedgeAIusecasestobepower-consumptionandcostsensitive,sothereisanongoingneedtobalancetheseaspectsacrosstheecosystem.Withthisinmind,wealsolookattheneedforheterogeneity,

i.e.,movingcompute-intenseworkloadstospecialisttypesofcomputethatofferamorebalancedapproach.

2Vision

Asuse-casecomplexityandthescaleofsmartconnectededgedevices

deploymentgrows,almostexponentially,sometechnologiesusedin

cloud-native

[1]

solutionsarebeingembracedinedgecomputing.Weseeafuturethatempowersthenextgenerationofapplicationdeveloperswithfrictionless‘cloud-like’developmentflowsthatfuelcollaboration,maximizere-use,acceleratetimetomarket,andreducethetotalcostofownership

onArm.TherapidadvancementofAIusecasesisexpectedtofuelmostofthegrowthintheedge(oredgeAI)market,withinferencebeingdeployedatscaleacrossmultiplearchitectures.

WHITEPAPER5

Thisrapidshiftinedgecomputerepresentsseveralchallenges,whichArmbelievesnecessitateanevolved,best-practiceapproachtoedgecomputingtoenabletheintelligentedgethrough:

—Re-useofsoftwarecomponents:Applicationsareakeydifferentiator.Theavailabilityandre-useofthecoreunderlyingstackiscriticalas

developerswishtofocusondifferentiationandmaximizere-useelsewhere.

—Embracingheterogeneitythroughabstractionofthecomplexityofdifferentiatedhardwarewithacommonsoftwareecosystem:

Devicesareuse-caseoptimizedbasedoncost,power,andperformance,drivinghybriddevicearchitectures(CPU/GPU/NPU/ISP,andsoon).

Thecommonsoftwareecosystemneedstoprovideanintegratedviewofthesystemwithlevelsofabstractionthatreducecomplexity.

—Genericabstracteddevelopmentflowsthatfuelcollaboration,speedtimetomarket,lowertotalcostofownershipandmaximizere-use:

Usecloud-nativederivedmethodologies,suchascontinuousintegration/continuousdeployment(CI/CD),todevelop,testapplications,anddeployefficientlytotargethardware.Developmentflowefficiencyiskeyinboththedevelopmentphase,aswellasinlong-tailmaintenanceoncethe

applicationisdeployed.

—Securityatscale:Thisisachievedthroughfrictionlesssecurelifecyclemanagementandregulatorycompliancetoreducetotalcostof

ownershipforthedeployedlifetimeofthedevice.

2.1EdgeVersusCloud

Beyondhardwareconstraints,thereareseveralkeydifferencesbetween

edge[

2

]andcloudasoperationalenvironments.Edgenodesanddevicesarepurpose-builtwithdifferentcostconstraints,resultinginmanydifferentconfigurationsdeployedovermultiplegenerationsofunderlyinghardwarecomponents.

WHITEPAPER6

Nodesdifferinhardwareresources,suchasCPUarchitecture,

micro-architecture,corecount,memory,storage,connectivity(latencyandbandwidth),peripherals,andaccelerators.Additionally,edgenodes

andgatewaysaremorelikelytorequiredynamicfrequencyscaling(eitherbecauseofbatteryconservationorthermalthrottling).Thishighdegreeofhardwareheterogeneityhasimplicationsondeployment,wheremultipleversionsofanapplicationmayberequiredtosupportdevicedifferences.

CloudNativeCloudEdge/IoTEmbedded

Highperformancecloudnativecompute

Optimisedcompute

High-performance,portableworkflowsUse-caseoptimizedefficiency,targetedworkflows

Deploy,

maintain

and

enhance

Deploy,

maintain

and

enhance

Deployandmaintaine.g.SW

updates

Deployandforget

Deploy,

maintain

and

enhance

Cloud-nativeworkflowscales

downtoedgeserver,hardwareabstractedandportable,butstill‘inthecloud.’

Embeddedsystemsscale-up,becomingsecure,connected,supportingsoftware

updatesandtakingonmoreofacloud-typedevelopmentflow.

FIG.2Organicgrowthandphysicalconstraints,suchaslocationanddifficult

CloudtransitiontoEdgeorcostlyreplacement,requiremultiplegenerationsofnodestocoexist,

leadingtodifferentSKUsofthedevicesupportedwiththesameapplicationsoftwareduringthesystem’slifetime.

Theedgeislikelytohaveahigherdatastorageandtransmissioncostcomparedtothedatacenter.Fewedgedevicesarelikelytohave

WHITEPAPER7

high-bandwidthnetworkconnections,constantconnectivityisnot

necessarilyagiven,andtransferringdatatoandfromthousandsofedgegatewaysisexpensive.Virtualmachineandcontainerimagesmagnify

thedatamovementcost,amountingtoclosetoacompletedistributiondownloadperapplication,duetoexistingpackaging.

Whilelayeredcontainerimagesareintendedtoreducethisoverhead,

third-partyapplicationpackagingmakesunderlyinglayerre-useunlikely.

Forexample,Armdevelopedaprototypehealthcareapplicationwith

machinelearning,whichused17Dockerimages,occupyingabout2.3GBofstorage.Deployingthisapplicationtothousandsofnodesovermeteredcellularnetworkingwouldnothavebeenpractical.Forthisreason,aswellasthesomewhatmoreconstrainedcomputecapability,wedonotseea

pure‘cloud-native’deploymenttoedgecomputingdevices,butrathera

frictionless‘cloud-like’modelwhichisaimedatdeliveringcloudbenefits,suchasportabilityandabstraction,inamorehardware-constrained

environment.

2.2Why‘CloudLike’inEdgeComputing?

FIG.3

BenefitsofCloudNative

Theefficienciesresultingfromminimizingtheoperationalburdenof

developers,administrators,andusersincloudcomputinghaveledtoothersegmentsevaluatingtheuseoftechnologiesoriginatingfromthecloudinotherenvironments.

WHITEPAPER8

Thedriverbehindthismovementisbasedonthelawofeconomics,namelythatthecloud-nativemodelofabstractionhasbeenshowntoaccelerate

timetomarketandsavecosts.Continuousdevelopment[

1

]isamajorcomponentofachievingafastertimetomarket.Theseadvantagesarerootedinseveralcorepropertiesofcloud-nativetechnologies:

—Portable,hardwareabstracted.

—Consistencyacrossanyinstallation/deployment.

—Timelyupdateswithoutcomplexre-integrationoverheads.

—Speedtimetomarketandmaximizere-use.—Fastapplicationdevelopmenttimes.

—Removeunnecessaryindustryfragmentationtoeliminatesiloedperplatformcosts.

2.3What’sChanginginEdgeComputing?

Digitaltransformationacrossindustriescontinuesatpace,bringingwithitnewinnovativebusinessservicesandnever-beforerealizedefficiencies.

FrombuildingthenextwaveofGigaFactoriestolow-carbon,energy-efficientcities,andtheelectrificationoftransport,acommonthemeunderliesitall—datainsightatascalenever-beforerealized.

Traditionalviewsofdatainsightarebuiltaroundadatacenter‘cloudcentric’model.Inthisscenario,sensordataissharedwiththecloud,inturnderivinginsightatscalethroughtechniquessuchasAI,todeliverthedesired

businessandefficiencyoutcomes.Thechallengecomeswithscaleandthesheernumberofconnecteddevices,andcorrespondingcomputedrives

theneedtoputprocessingclosetothesourceofthedata.Factorssuchaslatency,powerconsumption,cost,privacy,andconnectivity,alldrivethe

needtodeliverever-moresophisticatededgecomputing,ratherthansimplypushingdatatoremotecloud-basedserver.

WHITEPAPER9

Aswellasfrictionlesscomputewhereitisneeded,otherfactorsare

requiredtomeetthescaleanddemandofedgeAIgrowthoverthenextfewdecades.

Scalingdatainsightandvalue:Simplyconnectingdevicestothe

cloudbringsneitherscale,noroperationalefficiency.Traditionalcloud

datacentersdelivergenericcomputeforusebybusiness-levelapplications.Conversely,edgedevicesformthe‘real-worldinterface’anddelivermassiveinsightatscaleintothosecloud-basedservicesplatforms.Howinsight

isenabledattheedgeandhowtheseconnecteddevicesaresecurelymanagedbecomesacriticalsuccessfactorinscalingnewapplicationsandservices.

Securityatscale:Thereisgrowingregulationaroundthemanagementofelectronicdataandproducts.TheEuropeanCyberResilienceAct,

theUKProductSecurityandTelecommunicationsInfrastructureAct

andtheEuropeanRenewableEnergyDirectiveareprimeexamples.

WithsimilarlegislationprogressingintheUS,theregulatorylandscapecouldposeariskoffinancialpenaltiesandlostreputationforthosewhofailtomanagethesecurityofdigitalhardwareandsoftwareadequatelyacrossdevicelifecycles.Trustthereforebecomesasignificantfactorin

enablingscale.Edgedevicesdonotbenefitfrombeinginatraditionaldatacentersettingandareinstalledwherevertheyareneeded.

Unliketraditionalenterprisedatacentermodelswhereserversaredeployedinsecurelocationswithhighlymanagedsecurity,inedgedeployments,

weseeverydifferentdeploymentandthreatmodels.Edgedevicesmust

bedeployedinawidevarietyoflocations,withhighlyvariablesecurity

threats,e.g.,publiclylocated,susceptibletophysicalattack,connectingviapublicnetworks,tonamejustafew.Establishingtherightlevelofsecurityandtrustforedgedevicesiscriticaltoscaleapplicationsandrealizethe

businessbenefits.

WHITEPAPER10

Operationalefficiency:Aswescaleoutedgecompute,operational

efficiencybecomesakeyconsiderationwhenconsideringtotalcostof

ownership.Wecanthinkaboutthisintwoways:Firstly,thedevelopmentcosttocreatetheapplicationorservice,andsecondly,theoperationalorrunningcostsoncetheserviceisdeployed.Sinceedgecomputedevicestypicallyhavealonglifetime(5to10years,orlonger)thetotalcostof

ownershipbecomesacriticalconsideration.Thecostsincurredtooperateadeviceincludefactorssuchaspowerconsumption(linkedtorunning

costsandcarbonefficiency),aswellasdevicemaintenancecosts

relatedtomanagingsoftwareupdatesandoverallproductlifecycle.Asthedeploymentofdevicesscalesandusecasecomplexitygrows,devicevendorsandserviceprovidersincreasinglylooktooptimize

operationalefficiency.

Agileinnovation:Ourtraditionalviewofcloudcomputeisbuiltaroundagiledevelopment.Thisdeliverstremendousefficiencybothinterms

ofcloudaccessibilitytoavastnumberofdevelopersviaconsistentand

hardwareabstracteddevelopmentflows,andanagilemindsetinproductdevelopment.Asusecasesbecomemorecomplex,developersare

lookingtoembracethebenefitsof‘cloud-like’innovationinedgeusecases.Examplesincludeabstractinghardwaredifferencesasmuchaspossible

andsupportinganagiledevelopmentflowthatfacilitatesrapidinnovation,fastvirtualprototypingandcontinuousdevelopmentandimprovement

(CI/CDflows).

2.4ChallengestoOvercome

Aswehaveseen,thedemandforedgecomputeisrelentless,butsotoo

istheneedforefficiencyatalllevelsifwearetorealizethevisionatscale.TraditionalIoT-connecteddevicesthatweseetodaygosomewaytosolvingthesechallenges,butastepchangeinhowedgedevicesareenabledmust

WHITEPAPER11

happenacrossallindustries.Wecansummarizethekeychallengesasfollows:

Developa‘cloud-like’mindsetattheedge:Thetraditionaldatacenter

modelof‘writeonceandrunanywhere’doesnotmapdirectlytoedge

devicesforpracticalreasons,howeverelementsofthatmodelarecriticalforaneffectiveedgecomputingevolution.Edgedevicestendtobe

applicationspecific(e.g.asmartcamera)butmustembraceelements

offrictionlessdevelopmentforspecificbenefits.Aswethinkaboutedgecomputingasanextensionofthedatacenter,weneedawholenew

mindsetintermsofhowaccessibletheseedgedevicesaretodevelopers,andhowtheysupportagiledevelopment,virtualprototyping,and

continuousimprovements.Todeliverthisvisionalsorequiresasignificantmindsetshiftfortraditionalembeddeddevelopers.Goneisthetraditional

‘linear’developmentflowofspecifying,implementing,testing,and

deployingapplications.Instead,weshifttoCI/CD/deliveryflowtospeed

timetomarket,maximizesoftwarere-useandultimatelyreducecost.

Todothis,themarketmustbuildcommonabstractedprogrammingmodelstoopentheaccessibilityofedgedevicestodevelopersacrossplatforms,

abstractingcomplexityandlimitinghardwaredependenciesexclusivelytowheretheseaddvalue,suchasforperformanceandpoweroptimization.

Securityandprivacyatscale:Abedrockofscalingthecloudouttothe

edgeisensuringrobustsecurityandprivacy.Buildingdevicesthathave

atrustedandconsistentapproachtosecurityiscriticalfortheirlifecycle

managementandensuringtrustaroundthedevice,connection,software

lifecycle,data,andservices.Withsoftwarestacksbecomingincreasingly

complexandmultivendor,weseegreateraneedforcomposablesoftware,wherebyeachpartyownsonlytheportionofsoftwarethattheycareabout.Withinthismodel,eachsoftwarecomponentessentiallyhasitsownsecurelifecycle.Underpinningthisistheneedforconsistentplatformsecurity

capabilities,suchassecureboot,secureupdates,securestorage,

WHITEPAPER12

andtrustedcrypto.Howeachofthesoftwarecomponentscanaccessthesesecureplatformservicestomanagetheirlifecycleiscritical.

Eliminateneedlessfragmentation:Needlessfragmentationholdsback

innovationandslowsthepaceofadoptionatscale.Itisthereforeessentialtoseekoutcommonalitythatremovesneedlessnon-differentiationsothesupplychaincanfocusonlyonthedifferentiationthataddsvaluetotheirbusinessandthemarket.Anobsessiveattentiontoefficiencyisneeded

bothinthedevelopmentofthedevice,aswellastheoperationalcosts.

Amodularapproachtosoftwaredeployment:Fragmentationchallenges

extendtosoftwareasweconsidertheincreasinglycomplexusecasesfor

edgedevices.Itiscommonplaceformultivendorsoftwarestackstorun

onanedgedevicewithmanythird-partycomponentsneedingtocome

togetherandinteroperate.Increasingly,end-marketdeploymentscareaboutwhatsoftwareisrunningonedgedevices.Fleetmanagers,forexample,

wanttoknowwhatoperatingsystemsaredeployed,whatsecuritypatchesarepushedout,andwheredifferentsoftwareassetsarecomingfrom.

Thedesireforchoice,coupledwithgrowingcomplexity,isdrivingtheneedformodular,interoperablesoftwarethatcanbemaintainedthroughoutitsdeployedlifetime.

Balancestandardizationanddifferentiation:Themarketmustembracestandardsandcommonalitywherenecessarytospeedtimetomarket,

reducetotalcostofownership,andeliminateneedlessfragmentation.

CollaboratingonArmcanbringtherightlevelofstandardization,while

allowinghardwareinnovationanddifferentiationtothrive.Thereisno

single‘recipe’foredgedevicesfromanArmplatformpointofview.

Instead,weconsider‘thesetofhardwareandsoftwareinterfacesneededtominimizethecostofbooting,running,andmaintainingoperatingsystemsandothersystemsoftwarethroughthelifetimeofthedevice’.

WHITEPAPER13

Benefitsofthisapproachinclude:

—Reducestime,cost,andeffortfromgettingsoftwaretoinstallandworkfordevicelifetimes.

—Removesnon-differentiatingcostfromtheecosystem.

—Allowstheecosystemtoinvestmoretimeandmoneyonworkthataddsvalue.

Today,initiativeslike

PARSEC

forstandardizedhardware-abstractedsecurityservicesarebecomingessential,asisaconsistentapproachtosecurity,whichisprovidedby

PSACertified

.Plus,through

ArmSystemReady,welookathowoperatingsystemsaresupportedonedgedevicesasacriticalfactor,alongsidetheneedtoofferandmaintainoperatingsystemdistributionsondevicesfortheircompletelifecycle,

whileeliminatingper-platformportingcosts.

HeterogeneityinedgeAI:Whenthinkingaboutcloudnative,

weimaginecontainerizedcomputeworkloadsthatcanruninafullyportablemannerinclouddatacenters.Asweestablishedearlyinthis

document,edgecomputingtendstobeapplicationspecificandoptimizedforcertainworkloadsandpower/performancebudgets.Overthelast

fewyears,weareseeingadeepeningtrendfor‘a(chǎn)cceleratedcompute,’wherebyhardwareaccelerationisappliedtocommonandcompute-intensiveworkloads.Acceleratedcomputetakesmanyformsbut

principallyfallsintotwoareas:

01In-lineaccelerationthatoccursaspartoftheCPUoperation(e.g.,ArmScalableMatrixExtensions).

02Offloadacceleration(e.g.hardwarethatsitsalongsidetheCPU,

suchasanNPU,bprovidingheterogeneityintheprogrammingmodel).

WHITEPAPER14

Acceleratedcomputeisusedtoimproveperformance,reducepower

consumptionforspecificworkloads,orsometimesboth.Examininghow

developerexperiencesscaleacrossheterogeneousplatformsisessentialtoavoidneedlessfragmentationandsiloeddevelopmentsbecoming

deeplyentwinedtospecifichardwarevariants.Aswelooktowardsthe

evolutionofedgedevicesasoutlinedinthispaper,thepartialdecouplingofhardwareandapplicationasatrendmovesustowardan‘a(chǎn)pp-like’

modelthatfa

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論