




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
一、協(xié)方差二、相關(guān)系數(shù)§4.3協(xié)方差及相關(guān)系數(shù)上頁下頁鈴結(jié)束返回首頁一、協(xié)方差定義1:稱數(shù)值E{[X-E(X)][Y-E(Y)]}為X,Y的協(xié)方差,記為Cov(X,Y)(Covariance)或σxy,即:σxy=Cov(X,Y)=E{[X-E(X)][Y-E(Y)]}
(1)
說明:
1)由定義1,若(X,Y)是離散型的,則
若(X,Y)是連續(xù)型的,則2)由方差的定義知D(X)=σxx,D(Y)=σyy
3)D(X+Y)=D(X)+D(Y)+2Cov(X,Y)
=σxx+σyy+2σxy
(4)
4)Cov(X,Y)=E(XY)-E(X)E(Y)(5)且由方差的性質(zhì)3知:當(dāng)X,Y相互獨(dú)立時(shí),σxy=0,但反之不一定。反例:設(shè)(X,Y)的聯(lián)合密度是f(x,y)=,x2+y2≤10
,其它求:σXX,σXY,σYYσxy=Cov(X,Y)=E{[X-E(X)][Y-E(Y)]}
(1)
反例:
設(shè)(X,Y)的聯(lián)合密度是解:
E(X)=E(Y)=0σXX=σYY=1/4
,σXY=0
故X與Y不相互獨(dú)立可見σXY=0是隨機(jī)變量X與Y獨(dú)立的必要條件而非充分條件.f(x,y)=,x2+y2≤10
,其它σxy=Cov(X,Y)=E{[X-E(X)][Y-E(Y)]}
(1)
注:對(duì)二維正態(tài)向量而言,σXY=0是X,Y相互獨(dú)立的充要條件。§3.4例2曾證明X,Y獨(dú)立的充要條件是ρ=0,以下例題將證明ρ=0與σXY=0等價(jià)。
例1設(shè)(X,Y)~N(μ1,μ2,σ12,σ22,ρ),求σXY。解:
E(X)=μ1,E(Y)=μ2,σXX=σ12,σYY=σ22
例1設(shè)(X,Y)~N(μ1,μ2,σ12,σ22,ρ),求σXY。二、協(xié)方差的性質(zhì)1.Cov(X,Y)=Cov(Y,X)2.Cov(aX,bY)=abCov(X,Y),a,b是常數(shù)
3.Cov(X1+X2,Y)=Cov(X1,Y)+Cov(X2,Y)4.,等號(hào)成立當(dāng)且僅當(dāng)存在常數(shù)a和b,使成立.三、相關(guān)系數(shù)定義2
為隨機(jī)變量X,Y的相關(guān)系數(shù)(分母不為零),有時(shí)簡記ρ
顯然,對(duì)二維正態(tài)分布N(μ1,μ2,σ12,σ22,ρ)而言,其相關(guān)系數(shù)為ρ.ρxy的含義:以X的線性函數(shù)a+bX來近似表示Y,以均方誤差來衡量以a+bX近似表達(dá)Y的好壞程度,e越小表示a+bX與Y的近似程度越好,因此,我們?nèi),b使e取到最小定義2
解得由(8)易得定理
1)|ρxy|≤12)|ρxy|=1的充要條件是:存在常數(shù)a,b使P{Y=a+bX}=1
相關(guān)系數(shù)ρxy的含義:
ρxy是一個(gè)可以用來衡量X,Y之間線性關(guān)系緊密程度的量,當(dāng)|ρxy
|較大時(shí),X,Y就線性關(guān)系而言聯(lián)系較緊密,我們稱X,Y線性相關(guān)的程度較好,當(dāng)|ρxy|=1時(shí),X,Y
之間以概率1存在著線性關(guān)系,當(dāng)ρxy
=0時(shí),稱X和Y不相關(guān)。說明:
1)當(dāng)X,Y相互獨(dú)立時(shí),ρ=0,但反之卻不一定,只有在二維正態(tài)向量中X,Y相互獨(dú)立<=>X,Y不相關(guān)(ρ=0)2)ρ是表征X,Y的線性關(guān)系的,ρ很小并不說明X,Y之間沒有關(guān)系,如若X~N(0,1),Y=X2,則ρxy=0,但Y是X的二次曲線
例1中設(shè)(X,Y)~N(μ1,μ2,σ12,σ22,ρ),則有
這說明二維正態(tài)隨機(jī)變量(X,Y)的概率密度的參數(shù)就是X和Y的相關(guān)系數(shù),因而二維正態(tài)隨機(jī)變量的分布完全由X和Y的數(shù)學(xué)期望、方差以及它們的相關(guān)系數(shù)所確定.
對(duì)于二維正態(tài)隨機(jī)變量(X,Y),X和Y不相關(guān)與X和Y相互獨(dú)立是等價(jià)的.例2
將一枚均勻的硬幣擲n次,以X和Y分別表示正面朝上和反面朝上的次數(shù),試求X和Y的協(xié)方差和相關(guān)系數(shù).解
由題意可知,
X和Y的相關(guān)系數(shù)
相關(guān)系數(shù)等于-1,這是因?yàn)榭偸浅闪ⅲ?/p>
例3對(duì)于(X,Y),已知D(X)=D(Y)=1,ρxy=1/2
,求D(X-2Y)解:
四、矩
定義3設(shè)X是隨機(jī)變量,若E(Xk),k=1,2,…存在,稱它為X的k階原點(diǎn)矩,簡稱k階矩
若E[X-E(X)]k,k=1,2,…存在,稱它為X的k階中心矩
若E(XkYl),k,l=1,2,…存在,稱它為X和Y的k+l階混合矩。
若E{[X-E(X)]k[Y-E(Y)]l}存在,稱它為X和Y的k+l階混合中心矩
由以上定義知E(X)是X的一階原點(diǎn)矩,D(X)是X的二階中心矩,Cov(X,Y)是X和Y的二階混合中心矩。
定義3設(shè)X是隨機(jī)變量,若E(Xk),k=1,2,…存在,稱它為X的k階原點(diǎn)矩,簡稱k階矩*性質(zhì):
1)n維隨機(jī)變量(X1,X2,…,Xn)服從n維正態(tài)分布的充要條件是X1,X2,…,Xn的任意的線性組合l1X1+l2X2+…+lnXn都服從一維正態(tài)分布。2)若(X1,X2,…,Xn)服從n維正態(tài)分布,設(shè)Y1,Y2,…,Yk,(k=1,2,…,n)是X
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 分配生考試數(shù)學(xué)試卷
- 高二上冊(cè)期末數(shù)學(xué)試卷
- 2025年04月山東工商學(xué)院校醫(yī)院臨床醫(yī)師(省屬高校事業(yè)編制)招聘筆試歷年專業(yè)考點(diǎn)(難、易錯(cuò)點(diǎn))附帶答案詳解
- 2025至2030吹風(fēng)機(jī)行業(yè)市場(chǎng)深度研究與戰(zhàn)略咨詢分析報(bào)告
- 廣東初中期末數(shù)學(xué)試卷
- 中藥材種植技術(shù)培訓(xùn)與中藥材市場(chǎng)分析研究考核試卷
- 乳粉生產(chǎn)質(zhì)量管理中的質(zhì)量信息共享與溝通平臺(tái)搭建考核試卷
- 體育賽事觀眾互動(dòng)的線上線下融合模式考核試卷
- 辦公自動(dòng)化系統(tǒng)調(diào)度系統(tǒng)的實(shí)時(shí)性優(yōu)化技術(shù)考核試卷
- 高中理科必修三數(shù)學(xué)試卷
- 地理標(biāo)志產(chǎn)品質(zhì)量要求 清澗紅棗
- 風(fēng)險(xiǎn)經(jīng)理崗位資格考試練習(xí)試題附答案
- 《建筑業(yè)企業(yè)資質(zhì)等級(jí)標(biāo)準(zhǔn)》(建建200182號(hào))-20210829233
- 城鎮(zhèn)污泥標(biāo)準(zhǔn)檢驗(yàn)方法CJT221-2023 知識(shí)培訓(xùn)
- 村打井施工合同范本
- 屋頂分布式光伏電站施工組織設(shè)計(jì)方案
- 員工委派協(xié)議書
- DB11T 1034.2-2024交通噪聲污染緩解工程技術(shù)規(guī)范 第2部分:聲屏障措施
- 初一語文期末試卷及參考答案
- 四川省成都市金牛區(qū)2023-2024學(xué)年七年級(jí)下學(xué)期期末數(shù)學(xué)試題
- DL-T664-2016帶電設(shè)備紅外診斷應(yīng)用規(guī)范
評(píng)論
0/150
提交評(píng)論