北京市昌平區(qū)新學道臨川學校2024屆高考考前猜題卷之專家猜題卷數(shù)學試題_第1頁
北京市昌平區(qū)新學道臨川學校2024屆高考考前猜題卷之專家猜題卷數(shù)學試題_第2頁
北京市昌平區(qū)新學道臨川學校2024屆高考考前猜題卷之專家猜題卷數(shù)學試題_第3頁
北京市昌平區(qū)新學道臨川學校2024屆高考考前猜題卷之專家猜題卷數(shù)學試題_第4頁
北京市昌平區(qū)新學道臨川學校2024屆高考考前猜題卷之專家猜題卷數(shù)學試題_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

北京市昌平區(qū)新學道臨川學校2024屆高考考前猜題卷之專家猜題卷數(shù)學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,設為內(nèi)一點,且,則與的面積之比為A. B.C. D.2.某設備使用年限x(年)與所支出的維修費用y(萬元)的統(tǒng)計數(shù)據(jù)分別為,,,,由最小二乘法得到回歸直線方程為,若計劃維修費用超過15萬元將該設備報廢,則該設備的使用年限為()A.8年 B.9年 C.10年 D.11年3.已知無窮等比數(shù)列的公比為2,且,則()A. B. C. D.4.已知拋物線的焦點為,若拋物線上的點關于直線對稱的點恰好在射線上,則直線被截得的弦長為()A. B. C. D.5.“”是“函數(shù)(為常數(shù))為冪函數(shù)”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件6.2019年10月1日,中華人民共和國成立70周年,舉國同慶.將2,0,1,9,10這5個數(shù)字按照任意次序排成一行,拼成一個6位數(shù),則產(chǎn)生的不同的6位數(shù)的個數(shù)為A.96 B.84 C.120 D.3607.已知函數(shù)()的部分圖象如圖所示,且,則的最小值為()A. B.C. D.8.已知拋物線:的焦點為,過點的直線交拋物線于,兩點,其中點在第一象限,若弦的長為,則()A.2或 B.3或 C.4或 D.5或9.已知數(shù)列滿足,且成等比數(shù)列.若的前n項和為,則的最小值為()A. B. C. D.10.《九章算術》“少廣”算法中有這樣一個數(shù)的序列:列出“全步”(整數(shù)部分)及諸分子分母,以最下面的分母遍乘各分子和“全步”,各自以分母去約其分子,將所得能通分之分數(shù)進行通分約簡,又用最下面的分母去遍乘諸(未通者)分子和以通之數(shù),逐個照此同樣方法,直至全部為整數(shù),例如:及時,如圖:記為每個序列中最后一列數(shù)之和,則為()A.147 B.294 C.882 D.176411.設拋物線上一點到軸的距離為,到直線的距離為,則的最小值為()A.2 B. C. D.312.曲線在點處的切線方程為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.給出下列等式:,,,…請從中歸納出第個等式:______.14.設函數(shù),若對于任意的,∈[2,,≠,不等式恒成立,則實數(shù)a的取值范圍是.15.已知數(shù)列與均為等差數(shù)列(),且,則______.16.函數(shù)的定義域是____________.(寫成區(qū)間的形式)三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設數(shù)列的前n項和滿足,,,(1)證明:數(shù)列是等差數(shù)列,并求其通項公式﹔(2)設,求證:.18.(12分)我國在2018年社保又出新的好消息,之前流動就業(yè)人員跨地區(qū)就業(yè)后,社保轉移接續(xù)的手續(xù)往往比較繁瑣,費時費力.社保改革后將簡化手續(xù),深得流動就業(yè)人員的贊譽.某市社保局從2018年辦理社保的人員中抽取300人,得到其辦理手續(xù)所需時間(天)與人數(shù)的頻數(shù)分布表:時間人數(shù)156090754515(1)若300名辦理社保的人員中流動人員210人,非流動人員90人,若辦理時間超過4天的人員里非流動人員有60人,請完成辦理社保手續(xù)所需時間與是否流動人員的列聯(lián)表,并判斷是否有95%的把握認為“辦理社保手續(xù)所需時間與是否流動人員”有關.列聯(lián)表如下流動人員非流動人員總計辦理社保手續(xù)所需時間不超過4天辦理社保手續(xù)所需時間超過4天60總計21090300(2)為了改進工作作風,提高效率,從抽取的300人中辦理時間為流動人員中利用分層抽樣,抽取12名流動人員召開座談會,其中3人要求交書面材料,3人中辦理的時間為的人數(shù)為,求出分布列及期望值.附:0.100.050.0100.0052.7063.8416.6357.87919.(12分)已知,,設函數(shù),.(1)若,求不等式的解集;(2)若函數(shù)的最小值為1,證明:.20.(12分)若數(shù)列滿足:對于任意,均為數(shù)列中的項,則稱數(shù)列為“數(shù)列”.(1)若數(shù)列的前項和,,試判斷數(shù)列是否為“數(shù)列”?說明理由;(2)若公差為的等差數(shù)列為“數(shù)列”,求的取值范圍;(3)若數(shù)列為“數(shù)列”,,且對于任意,均有,求數(shù)列的通項公式.21.(12分)P是圓上的動點,P點在x軸上的射影是D,點M滿足.(1)求動點M的軌跡C的方程,并說明軌跡是什么圖形;(2)過點的直線l與動點M的軌跡C交于不同的兩點A,B,求以OA,OB為鄰邊的平行四邊形OAEB的頂點E的軌跡方程.22.(10分)如圖,四邊形是邊長為3的菱形,平面.(1)求證:平面;(2)若與平面所成角為,求二面角的正弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

作交于點,根據(jù)向量比例,利用三角形面積公式,得出與的比例,再由與的比例,可得到結果.【詳解】如圖,作交于點,則,由題意,,,且,所以又,所以,,即,所以本題答案為A.【點睛】本題考查三角函數(shù)與向量的結合,三角形面積公式,屬基礎題,作出合適的輔助線是本題的關鍵.2、D【解析】

根據(jù)樣本中心點在回歸直線上,求出,求解,即可求出答案.【詳解】依題意在回歸直線上,,由,估計第年維修費用超過15萬元.故選:D.【點睛】本題考查回歸直線過樣本中心點、以及回歸方程的應用,屬于基礎題.3、A【解析】

依據(jù)無窮等比數(shù)列求和公式,先求出首項,再求出,利用無窮等比數(shù)列求和公式即可求出結果?!驹斀狻恳驗闊o窮等比數(shù)列的公比為2,則無窮等比數(shù)列的公比為。由有,,解得,所以,,故選A?!军c睛】本題主要考查無窮等比數(shù)列求和公式的應用。4、B【解析】

由焦點得拋物線方程,設點的坐標為,根據(jù)對稱可求出點的坐標,寫出直線方程,聯(lián)立拋物線求交點,計算弦長即可.【詳解】拋物線的焦點為,則,即,設點的坐標為,點的坐標為,如圖:∴,解得,或(舍去),∴∴直線的方程為,設直線與拋物線的另一個交點為,由,解得或,∴,∴,故直線被截得的弦長為.故選:B.【點睛】本題主要考查了拋物線的標準方程,簡單幾何性質,點關于直線對稱,屬于中檔題.5、A【解析】

根據(jù)冪函數(shù)定義,求得的值,結合充分條件與必要條件的概念即可判斷.【詳解】∵當函數(shù)為冪函數(shù)時,,解得或,∴“”是“函數(shù)為冪函數(shù)”的充分不必要條件.故選:A.【點睛】本題考查了充分必要條件的概念和判斷,冪函數(shù)定義的應用,屬于基礎題.6、B【解析】

2,0,1,9,10按照任意次序排成一行,得所有不以0開頭的排列數(shù)共個,其中含有2個10的排列數(shù)共個,所以產(chǎn)生的不同的6位數(shù)的個數(shù)為.故選B.7、A【解析】

是函數(shù)的零點,根據(jù)五點法求出圖中零點及軸左邊第一個零點可得.【詳解】由題意,,∴函數(shù)在軸右邊的第一個零點為,在軸左邊第一個零點是,∴的最小值是.故選:A.【點睛】本題考查三角函數(shù)的周期性,考查函數(shù)的對稱性.函數(shù)的零點就是其圖象對稱中心的橫坐標.8、C【解析】

先根據(jù)弦長求出直線的斜率,再利用拋物線定義可求出.【詳解】設直線的傾斜角為,則,所以,,即,所以直線的方程為.當直線的方程為,聯(lián)立,解得和,所以;同理,當直線的方程為.,綜上,或.選C.【點睛】本題主要考查直線和拋物線的位置關系,弦長問題一般是利用弦長公式來處理.出現(xiàn)了到焦點的距離時,一般考慮拋物線的定義.9、D【解析】

利用等比中項性質可得等差數(shù)列的首項,進而求得,再利用二次函數(shù)的性質,可得當或時,取到最小值.【詳解】根據(jù)題意,可知為等差數(shù)列,公差,由成等比數(shù)列,可得,∴,解得.∴.根據(jù)單調性,可知當或時,取到最小值,最小值為.故選:D.【點睛】本題考查等差數(shù)列通項公式、等比中項性質、等差數(shù)列前項和的最值,考查函數(shù)與方程思想、轉化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意當或時同時取到最值.10、A【解析】

根據(jù)題目所給的步驟進行計算,由此求得的值.【詳解】依題意列表如下:上列乘上列乘上列乘630603153021020156121510所以.故選:A【點睛】本小題主要考查合情推理,考查中國古代數(shù)學文化,屬于基礎題.11、A【解析】

分析:題設的直線與拋物線是相離的,可以化成,其中是點到準線的距離,也就是到焦點的距離,這樣我們從幾何意義得到的最小值,從而得到的最小值.詳解:由①得到,,故①無解,所以直線與拋物線是相離的.由,而為到準線的距離,故為到焦點的距離,從而的最小值為到直線的距離,故的最小值為,故選A.點睛:拋物線中與線段的長度相關的最值問題,可利用拋物線的幾何性質把動線段的長度轉化為到準線或焦點的距離來求解.12、A【解析】

將點代入解析式確定參數(shù)值,結合導數(shù)的幾何意義求得切線斜率,即可由點斜式求的切線方程.【詳解】曲線,即,當時,代入可得,所以切點坐標為,求得導函數(shù)可得,由導數(shù)幾何意義可知,由點斜式可得切線方程為,即,故選:A.【點睛】本題考查了導數(shù)的幾何意義,在曲線上一點的切線方程求法,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

通過已知的三個等式,找出規(guī)律,歸納出第個等式即可.【詳解】解:因為:,,,等式的右邊系數(shù)是2,且角是等比數(shù)列,公比為,則角滿足:第個等式中的角,所以;故答案為:.【點睛】本題主要考查歸納推理,注意已知表達式的特征是解題的關鍵,屬于中檔題.14、【解析】試題分析:由題意得函數(shù)在[2,上單調遞增,當時在[2,上單調遞增;當時在上單調遞增;在上單調遞減,因此實數(shù)a的取值范圍是考點:函數(shù)單調性15、20【解析】

設等差數(shù)列的公差為,由數(shù)列為等差數(shù)列,且,根據(jù)等差中項的性質可得,,解方程求出公差,代入等差數(shù)列的通項公式即可求解.【詳解】設等差數(shù)列的公差為,由數(shù)列為等差數(shù)列知,,因為,所以,解得,所以數(shù)列的通項公式為,所以.故答案為:【點睛】本題考查等差數(shù)列的概念及其通項公式和等差中項;考查運算求解能力;等差中項的運用是求解本題的關鍵;屬于基礎題.16、【解析】

要使函數(shù)有意義,需滿足,即,解得,故函數(shù)的定義域是.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析,;(2)證明見解析【解析】

(1)由,作差得到,進一步得到,再作差即可得到,從而使問題得到解決;(2),求和即可.【詳解】(1),,兩式相減:①用換,得②②—①,得,即,所以數(shù)列是等差數(shù)列,又,∴,,公差,所以.(II).【點睛】本題考查由與的關系求通項以及裂項相消法求數(shù)列的和,考查學生的計算能力,是一道容易題.18、(1)列聯(lián)表見解析,有;(2)分布列見解析,.【解析】

(1)根據(jù)題意,結合已知數(shù)據(jù)即可填寫列聯(lián)表,計算出的觀測值,即可進行判斷;(2)先計算出時間在和選取的人數(shù),再求出的可取值,根據(jù)古典概型的概率計算公式求得分布列,結合分布列即可求得數(shù)學期望.【詳解】(1)因為樣本數(shù)據(jù)中有流動人員210人,非流動人員90人,所以辦理社保手續(xù)所需時間與是否流動人員列聯(lián)表如下:辦理社保手續(xù)所需時間與是否流動人員列聯(lián)表流動人員非流動人員總計辦理社保手續(xù)所需時間不超過4天453075辦理社保手續(xù)所需時間超過4天16560225總計21090300結合列聯(lián)表可算得.有95%的把握認為“辦理社保手續(xù)所需時間與是否流動人員”有關.(2)根據(jù)分層抽樣可知時間在可選9人,時間在可以選3名,故,則,,,,可知分布列為0123可知.【點睛】本題考查獨立性檢驗中的計算,以及離散型隨機變量的分布列以及數(shù)學期望,涉及分層抽樣,屬綜合性中檔題.19、(1);(2)證明見解析【解析】

(1)利用零點分段法,求出各段的取值范圍然后取并集可得結果.(2)利用絕對值三角不等式可得,然后使用柯西不等式可得結果.【詳解】(1)由,所以由當時,則所以當時,則當時,則綜上所述:(2)由當且僅當時取等號所以由,所以所以令根據(jù)柯西不等式,則當且僅當,即取等號由故,又則【點睛】本題考查使用零點分段法求解絕對值不等式以及柯西不等式的應用,屬基礎題.20、(1)不是,見解析(2)(3)【解析】

(1)利用遞推關系求出數(shù)列的通項公式,進一步驗證時,是否為數(shù)列中的項,即可得答案;(2)由題意得,再對公差進行分類討論,即可得答案;(3)由題意得數(shù)列為等差數(shù)列,設數(shù)列的公差為,再根據(jù)不等式得到公差的值,即可得答案;【詳解】(1)當時,又,所以.所以當時,,而,所以時,不是數(shù)列中的項,故數(shù)列不是為“數(shù)列”(2)因為數(shù)列是公差為的等差數(shù)列,所以.因為數(shù)列為“數(shù)列”所以任意,存在,使得,即有.①若,則只需,使得,從而得是數(shù)列中的項.②若,則.此時,當時,不為正整數(shù),所以不符合題意.綜上,.(3)由題意,所以,又因為,且數(shù)列為“數(shù)列”,所以,即,所以數(shù)列為等差數(shù)列.設數(shù)列的公差為,則有,由,得,整理得,①.②若,取正整數(shù),則當時,,與①式對應任意恒成立相矛盾,因此.同樣根據(jù)②式可得,所以.又,所以.經(jīng)檢驗當時,①②兩式對應任意恒成立,所以數(shù)列的通項公式為.【點睛】本題考查數(shù)列新定義題、等差數(shù)列的通項公式,考查函數(shù)與方程思想、轉化與化歸思想、分類討論思想,考查邏輯推理能力、運算求解能力,難度較大.21、(1)點M的軌跡C的方程為,軌跡C是以,為焦點,長軸長為4的橢圓(2)【解析】

(1)設,根據(jù)可求得,代入圓的方程可得所求軌跡方程;根據(jù)軌跡方程可知軌跡是以,為焦點,長軸長為的橢圓;(2)設,與

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論