版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
人教A版(新教材)高中數(shù)學(xué)選擇性必修第三冊(cè)PAGEPAGE1§8.3列聯(lián)表與獨(dú)立性檢驗(yàn)學(xué)習(xí)目標(biāo)1.通過(guò)實(shí)例,理解2×2列聯(lián)表的統(tǒng)計(jì)意義.2.通過(guò)實(shí)例,了解2×2列聯(lián)表獨(dú)立性檢驗(yàn)及其應(yīng)用.知識(shí)梳理知識(shí)點(diǎn)一分類(lèi)變量為了表述方便,我們經(jīng)常會(huì)使用一種特殊的隨機(jī)變量,以區(qū)別不同的現(xiàn)象或性質(zhì),這類(lèi)隨機(jī)變量稱(chēng)為分類(lèi)變量.分類(lèi)變量的取值可以用表示.知識(shí)點(diǎn)二2×2列聯(lián)表1.2×2列聯(lián)表給出了成對(duì)分類(lèi)變量數(shù)據(jù)的.2.定義一對(duì)分類(lèi)變量X和Y,我們整理數(shù)據(jù)如下表所示:XY合計(jì)Y=0Y=1X=0aba+bX=1cdc+d合計(jì)a+cb+dn=a+b+c+d像這種形式的數(shù)據(jù)統(tǒng)計(jì)表稱(chēng)為2×2列聯(lián)表.知識(shí)點(diǎn)三獨(dú)立性檢驗(yàn)1.定義:利用χ2的取值推斷分類(lèi)變量X和Y的方法稱(chēng)為χ2獨(dú)立性檢驗(yàn),讀作“卡方獨(dú)立性檢驗(yàn)”.簡(jiǎn)稱(chēng)獨(dú)立性檢驗(yàn).2.χ2=,其中n=a+b+c+d.3.獨(dú)立性檢驗(yàn)解決實(shí)際問(wèn)題的主要環(huán)節(jié)(1)提出零假設(shè)H0:X和Y相互獨(dú)立,并給出在問(wèn)題中的解釋?zhuān)?2)根據(jù)抽樣數(shù)據(jù)整理出2×2列聯(lián)表,計(jì)算χ2的值,并與臨界值xα比較.(3)根據(jù)檢驗(yàn)規(guī)則得出推斷結(jié)論.(4)在X和Y不獨(dú)立的情況下,根據(jù)需要,通過(guò)比較相應(yīng)的頻率,分析X和Y間的影響規(guī)律.思考獨(dú)立性檢驗(yàn)與反證法的思想類(lèi)似,那么獨(dú)立性檢驗(yàn)是反證法嗎?題型探究探究一等高堆積條形圖的應(yīng)用例1.為考察某種藥物預(yù)防疾病的效果,進(jìn)行動(dòng)物試驗(yàn),得到如下的列聯(lián)表:藥物效果試驗(yàn)列聯(lián)表患病未患病總計(jì)服用藥104555沒(méi)有服用藥203050總計(jì)3075105試用圖形判斷服用藥與患病之間是否有關(guān)系?反思感悟等高堆積條形圖的優(yōu)劣點(diǎn)(1)優(yōu)點(diǎn):較直觀地展示了eq\f(a,a+b)與eq\f(c,c+d)的差異性.(2)劣點(diǎn):不能給出推斷“兩個(gè)分類(lèi)變量有關(guān)系”犯錯(cuò)誤的概率.跟蹤訓(xùn)練1.為了解鉛中毒病人與尿棕色素為陽(yáng)性是否有關(guān)系,分別對(duì)病人組和對(duì)照組的尿液作尿棕色素定性檢查,結(jié)果如下:組別陽(yáng)性數(shù)陰性數(shù)總計(jì)鉛中毒病人29736對(duì)照組92837總計(jì)383573試畫(huà)出列聯(lián)表的等高條形圖,分析鉛中毒病人和對(duì)照組的尿棕色素陽(yáng)性數(shù)有無(wú)差別,鉛中毒病人與尿棕色素為陽(yáng)性是否有關(guān)系?探究二由χ2進(jìn)行獨(dú)立性檢驗(yàn)命題角度1有關(guān)“相關(guān)的檢驗(yàn)”例2.某校高三年級(jí)在一次全年級(jí)的大型考試中,數(shù)學(xué)成績(jī)優(yōu)秀和非優(yōu)秀的學(xué)生中,物理、化學(xué)、總分也為優(yōu)秀的人數(shù)如下表所示,則我們能否在犯錯(cuò)誤的概率不超過(guò)0.001的前提下認(rèn)為數(shù)學(xué)成績(jī)優(yōu)秀與物理、化學(xué)優(yōu)秀有關(guān)系?物理優(yōu)秀化學(xué)優(yōu)秀總分優(yōu)秀數(shù)學(xué)優(yōu)秀228225267數(shù)學(xué)非優(yōu)秀14315699注:該年級(jí)此次考試中數(shù)學(xué)成績(jī)優(yōu)秀的有360人,非優(yōu)秀的有880人.反思感悟用χ2進(jìn)行“相關(guān)的檢驗(yàn)”步驟(1)零假設(shè):即先假設(shè)兩變量間沒(méi)關(guān)系.(2)計(jì)算χ2:套用χ2的公式求得χ2值.(3)查臨界值:結(jié)合所給小概率值α查得相應(yīng)的臨界值xα.(4)下結(jié)論:比較χ2與xα的大小,并作出結(jié)論.跟蹤訓(xùn)練2.某校對(duì)學(xué)生課外活動(dòng)進(jìn)行調(diào)查,結(jié)果整理成下表:用你所學(xué)過(guò)的知識(shí)進(jìn)行分析,能否在犯錯(cuò)誤的概率不超過(guò)0.01的前提下,認(rèn)為“喜歡體育還是文娛與性別有關(guān)系”?體育文娛合計(jì)男生212344女生62935總計(jì)275279命題角度2有關(guān)“無(wú)關(guān)的檢驗(yàn)”例3.某省進(jìn)行高中新課程改革,為了解教師對(duì)新課程教學(xué)模式的使用情況,某一教育機(jī)構(gòu)對(duì)某學(xué)校的教師關(guān)于新課程教學(xué)模式的使用情況進(jìn)行了問(wèn)卷調(diào)查,共調(diào)查了50人,其中有老教師20人,青年教師30人.老教師對(duì)新課程教學(xué)模式贊同的有10人,不贊同的有10人;青年教師對(duì)新課程教學(xué)模式贊同的有24人,不贊同的有6人.(1)根據(jù)以上數(shù)據(jù)建立一個(gè)2×2列聯(lián)表;(2)試根據(jù)小概率值α=0.01的獨(dú)立性檢驗(yàn),分析對(duì)新課程教學(xué)模式的贊同情況與教師年齡是否有關(guān)系.反思感悟獨(dú)立性檢驗(yàn)解決實(shí)際問(wèn)題的主要環(huán)節(jié)(1)提出零假設(shè)H0:X和Y相互獨(dú)立,并給出在問(wèn)題中的解釋?zhuān)?2)根據(jù)抽樣數(shù)據(jù)整理出2×2列聯(lián)表,計(jì)算χ2的值,并與臨界值xα比較.(3)根據(jù)檢驗(yàn)規(guī)則得出推斷結(jié)論.(4)在X和Y不獨(dú)立的情況下,根據(jù)需要,通過(guò)比較相應(yīng)的頻率,分析X和Y間的影響規(guī)律.跟蹤訓(xùn)練3.對(duì)電視節(jié)目單上的某一節(jié)目,部分觀眾的態(tài)度如下表:完全同意反對(duì)合計(jì)男人142640女人293463合計(jì)4360103問(wèn)能否認(rèn)為觀看這個(gè)電視節(jié)目的觀眾與性別無(wú)關(guān)?課堂小結(jié)1.知識(shí)清單:(1)分類(lèi)變量.(2)2×2列聯(lián)表.(3)等高堆積條形圖.(4)獨(dú)立性檢驗(yàn),χ2公式.2.方法歸納:數(shù)形結(jié)合.3.常見(jiàn)誤區(qū):對(duì)獨(dú)立性檢驗(yàn)的原理不理解,導(dǎo)致不會(huì)用χ2分析問(wèn)題.當(dāng)堂達(dá)標(biāo)1.某科研機(jī)構(gòu)為了研究中年人禿發(fā)與心臟病是否有關(guān),隨機(jī)調(diào)查了一些中年人的情況,具體數(shù)據(jù)如表:心臟病無(wú)心臟病禿發(fā)20300不禿發(fā)5450根據(jù)表中數(shù)據(jù)得到k=eq\f(775×(20×450-5×300)2,25×750×320×455)≈15.968,因?yàn)閗>6.635,則斷定禿發(fā)與心臟病有關(guān)系,那么這種判斷出錯(cuò)的可能性為()A.0.1 B.0.05C.0.025 D.0.012.在一項(xiàng)中學(xué)生近視情況的調(diào)查中,某校男生150名中有80名近視,女生140名中有70名近視,在檢驗(yàn)這些中學(xué)生眼睛近視是否與性別有關(guān)時(shí)用什么方法最有說(shuō)服力()A.平均數(shù)與方差 B.回歸分析C.獨(dú)立性檢驗(yàn) D.概率3.在研究打鼾與患心臟病之間的關(guān)系中,通過(guò)收集數(shù)據(jù)、整理分析數(shù)據(jù)得到“打鼾與患心臟病有關(guān)”的結(jié)論,并且在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為這個(gè)結(jié)論是成立的.下列說(shuō)法中正確的是()A.100個(gè)心臟病患者中至少有99人打鼾B.1個(gè)人患心臟病,則這個(gè)人有99%的概率打鼾C.100個(gè)心臟病患者中一定有打鼾的人D.100個(gè)心臟病患者中可能一個(gè)打鼾的人都沒(méi)有4.觀察下列各圖,其中兩個(gè)分類(lèi)變量x,y之間關(guān)系最強(qiáng)的是________.5.某大學(xué)餐飲中心為了解新生的飲食習(xí)慣,在全校一年級(jí)學(xué)生中進(jìn)行了抽樣調(diào)查,調(diào)查結(jié)果如下表所示:喜歡甜品不喜歡甜品總計(jì)南方學(xué)生602080北方學(xué)生101020總計(jì)7030100根據(jù)表中數(shù)據(jù),問(wèn)是否有95%的把握認(rèn)為“南方學(xué)生和北方學(xué)生在選用甜品的飲食習(xí)慣方面有差異”.▁▃▅▇█參*考*答*案█▇▅▃▁知識(shí)梳理知識(shí)點(diǎn)一分類(lèi)變量實(shí)數(shù)知識(shí)點(diǎn)二2×2列聯(lián)表1.交叉分類(lèi)頻數(shù)知識(shí)點(diǎn)三獨(dú)立性檢驗(yàn)1.是否獨(dú)立2.eq\f(n(ad-bc)2,(a+b)(c+d)(a+c)(b+d))思考〖答案〗不是.因?yàn)榉醋C法不會(huì)出錯(cuò),而獨(dú)立性檢驗(yàn)依據(jù)的是小概率事件幾乎不發(fā)生.題型探究例1.解:相應(yīng)的等高條形圖如下:從圖形可以看出,服用藥的樣本中患病的比例明顯低于沒(méi)有服用藥的樣本中患病的比例,因此可以認(rèn)為:服用藥和患病之間有關(guān)系.跟蹤訓(xùn)練1.解:等高條形圖如圖所示:其中兩個(gè)淺色條的高分別代表鉛中毒病人和對(duì)照組樣本中尿棕色素為陽(yáng)性的頻率.由圖可以直觀地看出鉛中毒病人與對(duì)照組相比,尿棕色素為陽(yáng)性的頻率差異明顯,因此鉛中毒病人與尿棕色素為陽(yáng)性有關(guān)系.例2.解:(1)根據(jù)已知數(shù)據(jù)列出數(shù)學(xué)與物理優(yōu)秀的2×2列聯(lián)表如下:物理優(yōu)秀物理非優(yōu)秀總計(jì)數(shù)學(xué)優(yōu)秀228b360數(shù)學(xué)非優(yōu)秀143d880總計(jì)371b+d1240∴b=360-228=132,d=880-143=737,b+d=132+737=869.代入公式可得K2的觀測(cè)值為k1≈270.114.(2)按照上述方法列出數(shù)學(xué)與化學(xué)優(yōu)秀的2×2列聯(lián)表如下:化學(xué)優(yōu)秀化學(xué)非優(yōu)秀總計(jì)數(shù)學(xué)優(yōu)秀225135360數(shù)學(xué)非優(yōu)秀156724880總計(jì)3818591240代入公式可得K2的觀測(cè)值k2≈240.611.綜上,由于K2的觀測(cè)值都大于10.828,因此說(shuō)明都能在犯錯(cuò)誤的概率不超過(guò)0.001的前提下認(rèn)為數(shù)學(xué)成績(jī)優(yōu)秀與物理、化學(xué)優(yōu)秀有關(guān)系.跟蹤訓(xùn)練2.解:判斷方法如下:假設(shè)H0“喜歡體育還是喜歡文娛與性別沒(méi)有關(guān)系”,若H0成立,則χ2應(yīng)該很?。遪11=21,n12=23,n21=6,n22=29,n=79,∴χ2=eq\f(n(n11n22-n12n21)2,n1+n2+n+1n+2)=eq\f(79×(21×29-23×6)2,44×35×27×52)≈8.106.∵χ2≥6.635,∴我們有99%的把握認(rèn)為“喜歡體育還是文娛與性別有關(guān)系”,即在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為“喜歡體育還是喜歡文娛與性別有關(guān)”.例3.解:(1)2×2列聯(lián)表如下表所示:教師年齡對(duì)新課程教學(xué)模式合計(jì)贊同不贊同老教師101020青年教師24630合計(jì)341650(2)零假設(shè)為H0:對(duì)新課程教學(xué)模式的贊同情況與教師年齡無(wú)關(guān).由公式得χ2=eq\f(50×(10×6-24×10)2,34×16×20×30)≈4.963<6.635=x0.01,根據(jù)小概率值α=0.01的獨(dú)立性檢驗(yàn),沒(méi)有充分證據(jù)推斷H0不成立,即認(rèn)為對(duì)新課程教學(xué)模式的贊同情況與教師年齡無(wú)關(guān).跟蹤訓(xùn)練3.解:由公式得χ2=eq\f(103×(14×34-29×26)2,43×60×63×40)≈1.224.因?yàn)?.224<3.841,我們沒(méi)有理由說(shuō)是否觀看這個(gè)節(jié)目與觀眾的性別有關(guān),即可以認(rèn)為觀看這個(gè)電視節(jié)目的觀眾與性別無(wú)關(guān).當(dāng)堂達(dá)標(biāo)1.〖解析〗∵P(k>6.635)=0.01,故選D.〖答案〗D2.〖解析〗判斷兩個(gè)分類(lèi)變量是否有關(guān)的最有效方法是進(jìn)行獨(dú)立性檢驗(yàn),故選C.〖答案〗C3.〖解析〗這是獨(dú)立性檢驗(yàn),在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為“打鼾與患心臟病有關(guān)”.這只是一個(gè)概率,即打鼾與患心臟病有關(guān)的可能性為99%.根據(jù)概率的意義可知〖答案〗應(yīng)選D.〖答案〗D4.〖解析〗在四幅圖中圖(4)中兩個(gè)深
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 《留置針使用規(guī)范》課件
- 《小數(shù)數(shù)位順序表》課件
- 八下期中測(cè)試卷01【測(cè)試范圍:第1-11課】(原卷版)
- 旅游行業(yè)導(dǎo)游講解培訓(xùn)總結(jié)
- 2006年江蘇高考語(yǔ)文真題及答案
- 年度目標(biāo)設(shè)定與實(shí)現(xiàn)路徑計(jì)劃
- 幼兒園工作總結(jié)用心呵護(hù)溫馨成長(zhǎng)
- 《焊工基礎(chǔ)知識(shí)》課件
- 2023年-2024年新員工入職前安全教育培訓(xùn)試題附參考答案(奪分金卷)
- 廚師個(gè)人述職報(bào)告15篇
- 電除顫的并發(fā)癥預(yù)防及處理
- 《理想信念教育》課件
- 2023年高級(jí)EHS工程師年度總結(jié)及下年工作展望
- 《城市規(guī)劃原理試題》(附答案)
- 110kV升壓站構(gòu)支架組立施工方案
- 鋼構(gòu)件應(yīng)力超聲檢測(cè)技術(shù)規(guī)程
- -《多軸數(shù)控加工及工藝》(第二版)教案
- 體 育 課 教 學(xué) 評(píng) 價(jià) 量 表
- 23秋國(guó)家開(kāi)放大學(xué)《漢語(yǔ)國(guó)際教育概論》階段測(cè)驗(yàn)1-2+教學(xué)活動(dòng)1參考答案
- 新員工信息安全課件培訓(xùn)
- 小學(xué)英語(yǔ)-Unit3What would you likePartB Let's talk教學(xué)設(shè)計(jì)學(xué)情分析教材分析課后反思
評(píng)論
0/150
提交評(píng)論