高中數(shù)學(xué)必修二基本慨念公式大全_第1頁
高中數(shù)學(xué)必修二基本慨念公式大全_第2頁
高中數(shù)學(xué)必修二基本慨念公式大全_第3頁
高中數(shù)學(xué)必修二基本慨念公式大全_第4頁
高中數(shù)學(xué)必修二基本慨念公式大全_第5頁
已閱讀5頁,還剩7頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

ThismodelpaperwasrevisedbyLINDAonDecember15,2012.ThismodelpaperwasrevisedbyLINDAonDecember15,2012.高中數(shù)學(xué)必修二基本慨念公式大全高中數(shù)學(xué)必修二基本慨念公式大全基本概念公理1:如果一條直線上的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線上的所有的點(diǎn)都在這個(gè)平面內(nèi)。公理2:如果兩個(gè)平面有一個(gè)公共點(diǎn),那么它們有且只有一條通過這個(gè)點(diǎn)的公共直線。公理3:過不在同一條直線上的三個(gè)點(diǎn),有且只有一個(gè)平面。推論1:經(jīng)過一條直線和這條直線外一點(diǎn),有且只有一個(gè)平面。推論2:經(jīng)過兩條相交直線,有且只有一個(gè)平面。推論3:經(jīng)過兩條平行直線,有且只有一個(gè)平面。公理4:平行于同一條直線的兩條直線互相平行。等角定理:如果一個(gè)角的兩邊和另一個(gè)角的兩邊分別平行并且方向相同,那么這兩個(gè)角相等??臻g兩直線的位置關(guān)系:空間兩條直線只有三種位置關(guān)系:平行、相交、異面1、按是否共面可分為兩類:(1)共面:平行、相交(2)異面:異面直線的定義:不同在任何一個(gè)平面內(nèi)的兩條直線或既不平行也不相交。異面直線判定定理:用平面內(nèi)一點(diǎn)與平面外一點(diǎn)的直線,與平面內(nèi)不經(jīng)過該點(diǎn)的直線是異面直線。兩異面直線所成的角:范圍為(0°,90°)esp.空間向量法兩異面直線間距離:公垂線段(有且只有一條)esp.空間向量法2、若從有無公共點(diǎn)的角度看可分為兩類:(1)有且僅有一個(gè)公共點(diǎn)——相交直線;(2)沒有公共點(diǎn)——平行或異面直線和平面的位置關(guān)系:直線和平面只有三種位置關(guān)系:在平面內(nèi)、與平面相交、與平面平行①直線在平面內(nèi)——有無數(shù)個(gè)公共點(diǎn)②直線和平面相交——有且只有一個(gè)公共點(diǎn)直線與平面所成的角:平面的一條斜線和它在這個(gè)平面內(nèi)的射影所成的銳角。.空間向量法(找平面的法向量)規(guī)定:a、直線與平面垂直時(shí),所成的角為直角,b、直線與平面平行或在平面內(nèi),所成的角為0°角由此得直線和平面所成角的取值范圍為[0°,90°]最小角定理:斜線與平面所成的角是斜線與該平面內(nèi)任一條直線所成角中的最小角三垂線定理及逆定理:如果平面內(nèi)的一條直線,與這個(gè)平面的一條斜線的射影垂直,那么它也與這條斜線垂直直線和平面垂直直線和平面垂直的定義:如果一條直線a和一個(gè)平面內(nèi)的任意一條直線都垂直,我們就說直線a和平面互相垂直.直線a叫做平面的垂線,平面叫做直線a的垂面。直線與平面垂直的判定定理:如果一條直線和一個(gè)平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直于這個(gè)平面。直線與平面垂直的性質(zhì)定理:如果兩條直線同垂直于一個(gè)平面,那么這兩條直線平行。③直線和平面平行——沒有公共點(diǎn)直線和平面平行的定義:如果一條直線和一個(gè)平面沒有公共點(diǎn),那么我們就說這條直線和這個(gè)平面平行。直線和平面平行的判定定理:如果平面外一條直線和這個(gè)平面內(nèi)的一條直線平行,那么這條直線和這個(gè)平面平行。直線和平面平行的性質(zhì)定理:如果一條直線和一個(gè)平面平行,經(jīng)過這條直線的平面和這個(gè)平面相交,那么這條直線和交線平行。兩個(gè)平面的位置關(guān)系:(1)兩個(gè)平面互相平行的定義:空間兩平面沒有公共點(diǎn)(2)兩個(gè)平面的位置關(guān)系:兩個(gè)平面平行-----沒有公共點(diǎn);兩個(gè)平面相交-----有一條公共直線。a、平行兩個(gè)平面平行的判定定理:如果一個(gè)平面內(nèi)有兩條相交直線都平行于另一個(gè)平面,那么這兩個(gè)平面平行。兩個(gè)平面平行的性質(zhì)定理:如果兩個(gè)平行平面同時(shí)和第三個(gè)平面相交,那么交線平行。b、相交二面角(1)半平面:平面內(nèi)的一條直線把這個(gè)平面分成兩個(gè)部分,其中每一個(gè)部分叫做半平面。(2)二面角:從一條直線出發(fā)的兩個(gè)半平面所組成的圖形叫做二面角。二面角的取值范圍為[0°,180°](3)二面角的棱:這一條直線叫做二面角的棱。(4)二面角的面:這兩個(gè)半平面叫做二面角的面。(5)二面角的平面角:以二面角的棱上任意一點(diǎn)為端點(diǎn),在兩個(gè)面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫做二面角的平面角。(6)直二面角:平面角是直角的二面角叫做直二面角。兩平面垂直兩平面垂直的定義:兩平面相交,如果所成的角是直二面角,就說這兩個(gè)平面互相垂直。記為⊥兩平面垂直的判定定理:如果一個(gè)平面經(jīng)過另一個(gè)平面的一條垂線,那么這兩個(gè)平面互相垂直兩個(gè)平面垂直的性質(zhì)定理:如果兩個(gè)平面互相垂直,那么在一個(gè)平面內(nèi)垂直于交線的直線垂直于另一個(gè)平面。二面角求法:直接法(作出平面角)、三垂線定理及逆定理、面積射影定理、空間向量之法向量法(注意求出的角與所需要求的角之間的等補(bǔ)關(guān)系)多面體棱柱棱柱的定義:有兩個(gè)面互相平行,其余各面都是四邊形,并且每兩個(gè)四邊形的公共邊都互相平行,這些面圍成的幾何體叫做棱柱。棱柱的性質(zhì)(1)側(cè)棱都相等,側(cè)面是平行四邊形(2)兩個(gè)底面與平行于底面的截面是全等的多邊形(3)過不相鄰的兩條側(cè)棱的截面(對角面)是平行四邊形棱錐棱錐的定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,這些面圍成的幾何體叫做棱錐棱錐的性質(zhì):(1)側(cè)棱交于一點(diǎn)。側(cè)面都是三角形(2)平行于底面的截面與底面是相似的多邊形。且其面積比等于截得的棱錐的高與遠(yuǎn)棱錐高的比的平方正棱錐正棱錐的定義:如果一個(gè)棱錐底面是正多邊形,并且頂點(diǎn)在底面內(nèi)的射影是底面的中心,這樣的棱錐叫做正棱錐。正棱錐的性質(zhì):(1)各側(cè)棱交于一點(diǎn)且相等,各側(cè)面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。(3)多個(gè)特殊的直角三角形a、相鄰兩側(cè)棱互相垂直的正三棱錐,由三垂線定理可得頂點(diǎn)在底面的射影為底面三角形的垂心。b、四面體中有三對異面直線,若有兩對互相垂直,則可得第三對也互相垂直。且頂點(diǎn)在底面的射影為底面三角形的垂心。直線與方程(1)直線的傾斜角定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與x軸平行或重合時(shí),我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°(2)直線的斜率①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),不存在。②過兩點(diǎn)的直線的斜率公式:注意下面四點(diǎn):(1)當(dāng)時(shí),公式右邊無意義,直線的斜率不存在,傾斜角為90°;(2)k與P1、P2的順序無關(guān);(3)以后求斜率可不通過傾斜角而由直線上兩點(diǎn)的坐標(biāo)直接求得;(4)求直線的傾斜角可由直線上兩點(diǎn)的坐標(biāo)先求斜率得到。(3)直線方程①點(diǎn)斜式:直線斜率k,且過點(diǎn)注意:當(dāng)直線的斜率為0°時(shí),k=0,直線的方程是y=y1。當(dāng)直線的斜率為90°時(shí),直線的斜率不存在,它的方程不能用點(diǎn)斜式表示.但因l上每一點(diǎn)的橫坐標(biāo)都等于x1,所以它的方程是x=x1。②斜截式:,直線斜率為k,直線在y軸上的截距為b③兩點(diǎn)式:()直線兩點(diǎn),④截矩式:其中直線與軸交于點(diǎn),與軸交于點(diǎn),即與軸、軸的截距分別為。⑤一般式:(A,B不全為0)注意:eq\o\ac(○,1)各式的適用范圍eq\o\ac(○,2)特殊的方程如:平行于x軸的直線:(b為常數(shù));平行于y軸的直線:(a為常數(shù));(4)直線系方程:即具有某一共同性質(zhì)的直線(一)平行直線系平行于已知直線(是不全為0的常數(shù))的直線系:(C為常數(shù))(二)垂直直線系垂直于已知直線(是不全為0的常數(shù))的直線系:(C為常數(shù))(三)過定點(diǎn)的直線系①斜率為k的直線系:,直線過定點(diǎn);②過兩條直線,的交點(diǎn)的直線系方程為(為參數(shù)),其中直線不在直線系中。(5)兩直線平行與垂直當(dāng),時(shí),;注意:利用斜率判斷直線的平行與垂直時(shí),要注意斜率的存在與否。(6)兩條直線的交點(diǎn)相交交點(diǎn)坐標(biāo)即方程組的一組解。方程組無解;方程組有無數(shù)解與重合(7)兩點(diǎn)間距離公式:設(shè)是平面直角坐標(biāo)系中的兩個(gè)點(diǎn),則(8)點(diǎn)到直線距離公式:一點(diǎn)到直線的距離(9)兩平行直線距離公式在任一直線上任取一點(diǎn),再轉(zhuǎn)化為點(diǎn)到直線的距離進(jìn)行求解。圓的方程(1)標(biāo)準(zhǔn)方程,圓心,半徑為r;(2)一般方程當(dāng)時(shí),方程表示圓,此時(shí)圓心為,半徑為當(dāng)時(shí),表示一個(gè)點(diǎn);當(dāng)時(shí),方程不表示任何圖形。(3)求圓方程的方法:一般都采用待定系數(shù)法:先設(shè)后求。確定一個(gè)圓需要三個(gè)獨(dú)立條件,若利用圓的標(biāo)準(zhǔn)方程,需求出a,b,r;若利用一般方程,需要求出D,E,F(xiàn);另外要注意多利用圓的幾何性質(zhì):如弦的中垂線必經(jīng)過原點(diǎn),以此來確定圓心的位置。直線與圓的位置關(guān)系直線與圓的位置關(guān)系有相離,相切,相交三種情況:(1)設(shè)直線,圓,圓心到l的距離為,則有;;(2)過圓外一點(diǎn)的切線:①k不存在,驗(yàn)證是否成立②k存在,設(shè)點(diǎn)斜式方程,用圓心到該直線距離=半徑,求解k,得到方程【一定兩解】(3)過圓上一點(diǎn)的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點(diǎn)為(x0,y0),則過此點(diǎn)的切線方程為(x0-a)(x-a)+(y0-b)(y-b)=r2圓與圓的位置關(guān)系通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。設(shè)圓,兩圓的位置關(guān)系常通過兩

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論