版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023屆廣東深圳羅湖外國語學校高三第三次診斷考試數(shù)學試題文試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.棱長為2的正方體內(nèi)有一個內(nèi)切球,過正方體中兩條異面直線,的中點作直線,則該直線被球面截在球內(nèi)的線段的長為()A. B. C. D.12.設是雙曲線的左、右焦點,若雙曲線右支上存在一點,使(為坐標原點),且,則雙曲線的離心率為()A. B. C. D.3.已知函數(shù),且),則“在上是單調函數(shù)”是“”的()A.充分不必要條件 B.必要不充分條件 C.充分必要條件 D.既不充分也不必要條件4.已知橢圓:的左、右焦點分別為,,過的直線與軸交于點,線段與交于點.若,則的方程為()A. B. C. D.5.如圖,將兩個全等等腰直角三角形拼成一個平行四邊形,將平行四邊形沿對角線折起,使平面平面,則直線與所成角余弦值為()A. B. C. D.6.已知,,,,則()A. B. C. D.7.若集合,,則()A. B. C. D.8.為了貫徹落實黨中央精準扶貧決策,某市將其低收入家庭的基本情況經(jīng)過統(tǒng)計繪制如圖,其中各項統(tǒng)計不重復.若該市老年低收入家庭共有900戶,則下列說法錯誤的是()A.該市總有15000戶低收入家庭B.在該市從業(yè)人員中,低收入家庭共有1800戶C.在該市無業(yè)人員中,低收入家庭有4350戶D.在該市大于18歲在讀學生中,低收入家庭有800戶9.設函數(shù)的定義域為,滿足,且當時,.若對任意,都有,則的取值范圍是().A. B. C. D.10.直線x-3y+3=0經(jīng)過橢圓x2a2+y2bA.3-1 B.3-12 C.11.斜率為1的直線l與橢圓相交于A、B兩點,則的最大值為A.2 B. C. D.12.根據(jù)散點圖,對兩個具有非線性關系的相關變量x,y進行回歸分析,設u=lny,v=(x-4)2,利用最小二乘法,得到線性回歸方程為=0.5v+2,則變量y的最大值的估計值是()A.e B.e2 C.ln2 D.2ln2二、填空題:本題共4小題,每小題5分,共20分。13.如圖所示,平面BCC1B1⊥平面ABC,ABC=120,四邊形BCC1B1為正方形,且AB=BC=2,則異面直線BC1與AC所成角的余弦值為_____.14.已知數(shù)列是等比數(shù)列,,則__________.15.如圖,在三棱錐A﹣BCD中,點E在BD上,EA=EB=EC=ED,BDCD,△ACD為正三角形,點M,N分別在AE,CD上運動(不含端點),且AM=CN,則當四面體C﹣EMN的體積取得最大值時,三棱錐A﹣BCD的外接球的表面積為_____.16.在平面直角坐標系xOy中,已知A0,a,B3,a+4三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)秉持“綠水青山就是金山銀山”的生態(tài)文明發(fā)展理念,為推動新能源汽車產(chǎn)業(yè)迅速發(fā)展,有必要調查研究新能源汽車市場的生產(chǎn)與銷售.下圖是我國某地區(qū)年至年新能源汽車的銷量(單位:萬臺)按季度(一年四個季度)統(tǒng)計制成的頻率分布直方圖.(1)求直方圖中的值,并估計銷量的中位數(shù);(2)請根據(jù)頻率分布直方圖估計新能源汽車平均每個季度的銷售量(同一組數(shù)據(jù)用該組中間值代表),并以此預計年的銷售量.18.(12分)三棱柱中,平面平面,,點為棱的中點,點為線段上的動點.(1)求證:;(2)若直線與平面所成角為,求二面角的正切值.19.(12分)己知,,.(1)求證:;(2)若,求證:.20.(12分)已知函數(shù).(1)當時,求函數(shù)的值域.(2)設函數(shù),若,且的最小值為,求實數(shù)的取值范圍.21.(12分)已知在四棱錐中,平面,,在四邊形中,,,,為的中點,連接,為的中點,連接.(1)求證:.(2)求二面角的余弦值.22.(10分)電視傳媒公司為了解某地區(qū)觀眾對某體育節(jié)目的收視情況,隨機抽取了100名觀眾進行調查,其中女性有55名,下面是根據(jù)調查結果繪制的觀眾日均收看該體育節(jié)目時間的頻率分布直方圖:將日均收看該體育節(jié)目時間不低于40分鐘的觀眾稱為“體育迷”.(1)根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此資料你是否認為“體育迷”與性別有關?非體育迷體育迷合計男女1055合計(2)將上述調查所得到的頻率視為概率.現(xiàn)在從該地區(qū)大量電視觀眾中,采用隨機抽樣方法每次抽取1名觀眾,抽取3次,記被抽取的3名觀眾中的“體育迷”人數(shù)為X.若每次抽取的結果是相互獨立的,求X的分布列,期望E(X)和方差D(X).附:.P(K2≥k)0.050.01k3.8416.635
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】
連結并延長PO,交對棱C1D1于R,則R為對棱的中點,取MN的中點H,則OH⊥MN,推導出OH∥RQ,且OH=RQ=,由此能求出該直線被球面截在球內(nèi)的線段的長.【詳解】如圖,MN為該直線被球面截在球內(nèi)的線段連結并延長PO,交對棱C1D1于R,則R為對棱的中點,取MN的中點H,則OH⊥MN,∴OH∥RQ,且OH=RQ=,∴MH===,∴MN=.故選:C.【點睛】本題主要考查該直線被球面截在球內(nèi)的線段的長的求法,考查空間中線線、線面、面面間的位置關系等基礎知識,考查運算求解能力,是中檔題.2.D【解析】
利用向量運算可得,即,由為的中位線,得到,所以,再根據(jù)雙曲線定義即可求得離心率.【詳解】取的中點,則由得,即;在中,為的中位線,所以,所以;由雙曲線定義知,且,所以,解得,故選:D【點睛】本題綜合考查向量運算與雙曲線的相關性質,難度一般.3.C【解析】
先求出復合函數(shù)在上是單調函數(shù)的充要條件,再看其和的包含關系,利用集合間包含關系與充要條件之間的關系,判斷正確答案.【詳解】,且),由得或,即的定義域為或,(且)令,其在單調遞減,單調遞增,在上是單調函數(shù),其充要條件為即.故選:C.【點睛】本題考查了復合函數(shù)的單調性的判斷問題,充要條件的判斷,屬于基礎題.4.D【解析】
由題可得,所以,又,所以,得,故可得橢圓的方程.【詳解】由題可得,所以,又,所以,得,,所以橢圓的方程為.故選:D【點睛】本題主要考查了橢圓的定義,橢圓標準方程的求解.5.C【解析】
利用建系,假設長度,表示向量與,利用向量的夾角公式,可得結果.【詳解】由平面平面,平面平面,平面所以平面,又平面所以,又所以作軸//,建立空間直角坐標系如圖設,所以則所以所以故選:C【點睛】本題考查異面直線所成成角的余弦值,一般采用這兩種方法:(1)將兩條異面直線作輔助線放到同一個平面,然后利用解三角形知識求解;(2)建系,利用空間向量,屬基礎題.6.D【解析】
令,求,利用導數(shù)判斷函數(shù)為單調遞增,從而可得,設,利用導數(shù)證出為單調遞減函數(shù),從而證出,即可得到答案.【詳解】時,令,求導,,故單調遞增:∴,當,設,,又,,即,故.故選:D【點睛】本題考查了作差法比較大小,考查了構造函數(shù)法,利用導數(shù)判斷式子的大小,屬于中檔題.7.A【解析】
用轉化的思想求出中不等式的解集,再利用并集的定義求解即可.【詳解】解:由集合,解得,則故選:.【點睛】本題考查了并集及其運算,分式不等式的解法,熟練掌握并集的定義是解本題的關鍵.屬于基礎題.8.D【解析】
根據(jù)給出的統(tǒng)計圖表,對選項進行逐一判斷,即可得到正確答案.【詳解】解:由題意知,該市老年低收入家庭共有900戶,所占比例為6%,則該市總有低收入家庭900÷6%=15000(戶),A正確,該市從業(yè)人員中,低收入家庭共有15000×12%=1800(戶),B正確,該市無業(yè)人員中,低收入家庭有15000×29%%=4350(戶),C正確,該市大于18歲在讀學生中,低收入家庭有15000×4%=600(戶),D錯誤.故選:D.【點睛】本題主要考查對統(tǒng)計圖表的認識和分析,這類題要認真分析圖表的內(nèi)容,讀懂圖表反映出的信息是解題的關鍵,屬于基礎題.9.B【解析】
求出在的解析式,作出函數(shù)圖象,數(shù)形結合即可得到答案.【詳解】當時,,,,又,所以至少小于7,此時,令,得,解得或,結合圖象,故.故選:B.【點睛】本題考查不等式恒成立求參數(shù)的范圍,考查學生數(shù)形結合的思想,是一道中檔題.10.A【解析】
由直線x-3y+3=0過橢圓的左焦點F,得到左焦點為再由FC=2CA,求得A3【詳解】由題意,直線x-3y+3=0經(jīng)過橢圓的左焦點F,令所以c=3,即橢圓的左焦點為F(-3,0)直線交y軸于C(0,1),所以,OF=因為FC=2CA,所以FA=3又由點A在橢圓上,得3a由①②,可得4a2-24所以e2所以橢圓的離心率為e=3故選A.【點睛】本題考查了橢圓的幾何性質——離心率的求解,其中求橢圓的離心率(或范圍),常見有兩種方法:①求出a,c,代入公式e=ca;②只需要根據(jù)一個條件得到關于a,b,c的齊次式,轉化為a,c的齊次式,然后轉化為關于e的方程,即可得11.C【解析】
設出直線的方程,代入橢圓方程中消去y,根據(jù)判別式大于0求得t的范圍,進而利用弦長公式求得|AB|的表達式,利用t的范圍求得|AB|的最大值.【詳解】解:設直線l的方程為y=x+t,代入y2=1,消去y得x2+2tx+t2﹣1=0,由題意得△=(2t)2﹣1(t2﹣1)>0,即t2<1.弦長|AB|=4.故選:C.【點睛】本題主要考查了橢圓的應用,直線與橢圓的關系.常需要把直線與橢圓方程聯(lián)立,利用韋達定理,判別式找到解決問題的突破口.12.B【解析】
將u=lny,v=(x-4)2代入線性回歸方程=-0.5v+2,利用指數(shù)函數(shù)和二次函數(shù)的性質可得最大估計值.【詳解】解:將u=lny,v=(x4)2代入線性回歸方程=0.5v+2得:,即,當時,取到最大值2,因為在上單調遞增,則取到最大值.故選:B.【點睛】本題考查了非線性相關的二次擬合問題,考查復合型指數(shù)函數(shù)的最值,是基礎題,.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
將平移到和相交的位置,解三角形求得線線角的余弦值.【詳解】過作,過作,畫出圖像如下圖所示,由于四邊形是平行四邊形,故,所以是所求線線角或其補角.在三角形中,,故.【點睛】本小題主要考查空間兩條直線所成角的余弦值的計算,考查數(shù)形結合的數(shù)學思想方法,屬于中檔題.14.【解析】
根據(jù)等比數(shù)列通項公式,首先求得,然后求得.【詳解】設的公比為,由,得,故.故答案為:【點睛】本小題主要考查等比數(shù)列通項公式的基本量計算,屬于基礎題.15.32π【解析】
設ED=a,根據(jù)勾股定理的逆定理可以通過計算可以證明出CE⊥ED.AM=x,根據(jù)三棱錐的體積公式,運用基本不等式,可以求出AM的長度,最后根據(jù)球的表面積公式進行求解即可.【詳解】設ED=a,則CDa.可得CE2+DE2=CD2,∴CE⊥ED.當平面ABD⊥平面BCD時,當四面體C﹣EMN的體積才有可能取得最大值,設AM=x.則四面體C﹣EMN的體積(a﹣x)a×xax(a﹣x),當且僅當x時取等號.解得a=2.此時三棱錐A﹣BCD的外接球的表面積=4πa2=32π.故答案為:32π【點睛】本題考查了基本不等式的應用,考查了球的表面積公式,考查了數(shù)學運算能力和空間想象能力.16.(-53,【解析】
求出AB的長度,直線方程,結合△ABC的面積為5,轉化為圓心到直線的距離進行求解即可.【詳解】解:AB的斜率k=a+4-a3-0=4=3設△ABC的高為h,則∵△ABC的面積為5,∴S=12|AB|h=即h=2,直線AB的方程為y﹣a=43x,即4x﹣3y+3若圓x2+y2=9上有且僅有四個不同的點C,則圓心O到直線4x﹣3y+3a=0的距離d=|3a|則應該滿足d<R﹣h=3﹣2=1,即|3a|5得|3a|<5得-53<故答案為:(-53,【點睛】本題主要考查直線與圓的位置關系的應用,求出直線方程和AB的長度,轉化為圓心到直線的距離是解決本題的關鍵.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1),中位數(shù)為;(2)新能源汽車平均每個季度的銷售量為萬臺,以此預計年的銷售量約為萬臺.【解析】
(1)根據(jù)頻率分布直方圖中所有矩形面積之和為可計算出的值,利用中位數(shù)左邊的矩形面積之和為可求得銷量的中位數(shù)的值;(2)利用每個矩形底邊的中點值乘以相應矩形的面積,相加可得出銷量的平均數(shù),由此可預計年的銷售量.【詳解】(1)由于頻率分布直方圖的所有矩形面積之和為,則,解得,由于,因此,銷量的中位數(shù)為;(2)由頻率分布直方圖可知,新能源汽車平均每個季度的銷售量為(萬臺),由此預測年的銷售量為萬臺.【點睛】本題考查利用頻率分布直方圖求參數(shù)、中位數(shù)以及平均數(shù)的計算,考查計算能力,屬于基礎題.18.(1)見解析;(2)【解析】
(1)可證面,從而可得.(2)可證點為線段的三等分點,再過作于,過作,垂足為,則為二面角的平面角,利用解直角三角形的方法可求.也可以建立如圖所示的空間直角坐標系,利用兩個平面的法向量來計算二面角的平面角的余弦值,最后利用同角三角函數(shù)的基本關系式可求.【詳解】證明:(1)因為為中點,所以.因為平面平面,平面平面,平面,所以平面,而平面,故,又因為,所以,則,又,故面,又面,所以.(2)由(1)可得:面在面內(nèi)的射影為,則為直線與平面所成的角,即.因為,所以,所以,所以,即點為線段的三等分點.解法一:過作于,則平面,所以,過作,垂足為,則為二面角的平面角,因為,,,則在中,有,所以二面角的平面角的正切值為.解法二:以點為原點,建立如圖所示的空間直角坐標系,則,設點,由得:,即,,,點,平面的一個法向量,又,,設平面的一個法向量為,則,令,則平面的一個法向量為.設二面角的平面角為,則,即,所以二面角的正切值為.【點睛】線線垂直的判定可由線面垂直得到,也可以由兩條線所成的角為得到,而線面垂直又可以由面面垂直得到,解題中注意三種垂直關系的轉化.空間中的角的計算,可以建立空間直角坐標系把角的計算歸結為向量的夾角的計算,也可以構建空間角,把角的計算歸結平面圖形中的角的計算.19.(1)證明見解析(2)證明見解析【解析】
(1)采用分析法論證,要證,分式化整式為,再利用立方和公式轉化為,再作差提取公因式論證.(2)由基本不等式得,再用不等式的基本性質論證.【詳解】(1)要證,即證,即證,即證,即證,即證,該式顯然成立,當且僅當時等號成立,故.(2)由基本不等式得,,當且僅當時等號成立.將上面四式相加,可得,即.【點睛】本題考查證明不等式的方法、基本不等式,還考查推理論證能力以及化歸與轉化思想,屬于中檔題..20.(1);(2).【解析】
(1)令,求出的范圍,再由指數(shù)函數(shù)的單調性,即可求出結論;(2)對分類討論,分別求出以及的最小值或范圍,與的最小值建立方程關系,求出的值,進而求出的取值關系.【詳解】(1)當時,,令,∵∴,而是增函數(shù),∴,∴函數(shù)的值
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- OBD技術在2024年汽車維修培訓中的應用與實踐
- 2024年餐廳特色:《水果拼盤》教案應用
- 《自相矛盾》優(yōu)課一等獎課件
- 大學勞動教育課程內(nèi)容1
- 模擬電子技術課件chapter1
- 九年級美術下冊3意韻中國畫教案冀美版
- 2024-2025學年新教材高中物理第十一章電路及其應用第三節(jié)第2課時實驗2金屬絲電阻率的測量教案新人教版必修3
- 高中歷史第2單元工業(yè)文明的崛起和對中國的沖擊第9課改變世界的工業(yè)革命學業(yè)達標含解析岳麓版必修2
- 2024-2025學年新教材高中生物第2章基因和染色體的關系第1節(jié)第1課時減數(shù)分裂課后習題含解析新人教版必修2
- 九年級物理全冊11.6不同物質的導電性能習題5新版北師大版
- 拒絕網(wǎng)絡暴力班會課件
- 營銷人員成長提升計劃
- 質量管理制度及過程控制措施
- 光伏并網(wǎng)前單位工程驗收報告-2023
- 幽門螺旋桿菌治療指南課件
- 工程造價咨詢廉潔和守信制度
- 墻體脫落維修整改計劃書
- 音樂學科家長會
- 《云計算技術及應用》期末試卷二(含答案)
- 《旅游線路設計》課件
- 《民法典》學習必刷300題
評論
0/150
提交評論