版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024—2025學(xué)年第一學(xué)期期中檢測高三數(shù)學(xué)參考答案123456789BDABCBCDABD15.【答案】(1)零假設(shè)為H0:該地居民喜歡喝茶與年齡沒有關(guān)系.即沒有90%的把握認為該地居民喜歡喝茶與年齡有關(guān).···········所以X的分布列為:X012P494919··············································································································12分所以X的期望為.················································13分16.【答案】(1)f(x)=sin2xcosφ+cos2xsinφ=sin(2x+φ),又0<φ<,所以································所以f(x)的單調(diào)遞增區(qū)間為.·······························(2)因為f(x)=sin(2x+τ)圖象向右平移τ個單位得到y(tǒng)=sin[2(x?τ)+τ]=sin2x,再將y=sin2x圖象上各個點橫坐標變?yōu)樵瓉?倍得到y(tǒng)=sinx,所以g(x)=sinx;·10分所以不等式為sin(2x+)<sinx,不等式化為cos2x<sinx,結(jié)合函數(shù)y=sinx在(0,τ)上的圖象得τ<x<5τ,所以原不等式的解集為(,).···································································15分A1D1⊥平面ABB1A1,A1N平面ABB1A1,所以A1D1⊥A1N,所以QM⊥A1N,··································································2分BBQH=900,所以上A1HQ=900,即A1N⊥AQ;············································又AQ、AM平面AMQ,AQAM=A,所以A1N⊥平面AMQ.····················································································7分(2)方法一:在ΔANM中,過點N作NT丄AM于T,連HT.由(1)知NH⊥平面AMQ,故NH⊥AM,又NH、NT平面NHT,所以AM⊥平面NHT,所以AM⊥HT,所以上NTH為二面角N-AM-Q的平面角.······················································10分在Rt△A1B1N中,A1N=BH,Q所以A1H=所以NH=.···································································12分 55在Rt△AHT中,sin上QAM=所以,·············所以二面角N-AM-Q的正切值為.············································B1·B1NA1CDTHA1CDTHABzMD1MD1B1NQQAA1DDCyCyABx因為正方體棱長為2,M,N,Q分別為棱由(1)知A1N⊥平面AMQ.設(shè)m=(x222)是平面ANM的法向量,則,2z2所以cosA1N,mi==,所以二面角N-AM-Q的余弦值為,·····14分所以二面角N-AM-Q的正切值為.···········································所以cosB=0或者sinC=sinB.·········方法一:在△CBQ中,由正弦定理,得在△BPQ中,由正弦定理,得APQBC 2sinαcosα+ 2sinαcosα+2方法二:在△ABP中,由正弦定理,得所以 .方法三:在△CBQ中,由正弦定理,得所以 4(sinα+cosα)(cosα+sinα)?23sinα(cosα+sinα)?2(cosα?sinα)(sinα+cosα) =②假設(shè)存在常數(shù)θ,k,對于所有滿足題意的α,β,都有sin2α?sin2β+k=6ksinαcosβ成立,則存在常數(shù)θ,k,對于所有滿足題意的α,β,利用參考公式,有2cos(α+β)sin(α?β)+k=6k.[(sin(α+β)+sin(α?β)].································14分由題意,α+β=是定值,所以sin(α+β),co(α+β)是定值,[2cos(α+β)?3k]sin(α?β)+k[1?3sin(α+β)]=0對于所有滿足題意的α,β成立, 故cosθ=cos[τ?(α+β)]=sin(α+β)=1,.············23思路二:也可以賦值:因為對于所有滿足題意的α,β,都有sin2α?sin2β+k=6ksinαcosβ,取α=β,則k=6ksinαcosα,則sin2α=sin(α+β)=,所以cosθ=cos[τ?(α+β)]=sin(α+β)=1,23 取?θ,β=0,則sinα=cosθ=,cosα=,則sin2α+k=6ksinα,即2××+k=6k×再證明等式恒成立.增,··························································所以當x=1時,f(x)取極小值0,無極大值.······················································4分又ex>x0+1>0,則f(ex)>f(x0+1),+∞),使得f(ex)<f(x0+1)成立,故不符合;············又ex>x0+1>1,則f(ex)>f(x0+1),+∞),使得f(ex)<f(x0+1)成立,故不符合;············+∞),使得f(ex)<f(x0+1)成立,故符合.xxxx又g(0)=0,所以g(x)>0,故不存在x0∈(0,+∞),使得f(ex)<f(x0+1)成立.··········5分x又g(0)=0,所以g(x)>0,故不存在x0∈(0,+∞),使得f(ex)<f(x0+1)成立;·······7分又u(x)單調(diào)遞增,u(x)的圖象連續(xù)不間斷, 所以當x∈(0,x1)時,u(x)<0,即φ+∞),使得f(ex)<f(x0+1)成立.4所以要比較f(4a+a2)與f(2a+a4)的大小,即比較4a+a2與2a+a4的大小,·········11分即比較4a?2a與a4?a2的大小.令F(x)=x2?x,則比較F(2a)與F(a2)的大小.易知F(x)在(1,+∞)上單調(diào)遞增,即比較2a與a2的大小,即比較aln2與2lna的大小,即比較與的大小.······································12分時,t(x)單調(diào)遞減,又t(2)=t(4
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度智慧城市建設(shè)中的光纜鋪設(shè)分包合同2篇
- 二零二五年度充電樁智能監(jiān)控系統(tǒng)安裝合同4篇
- 二零二五版苗圃技術(shù)員智慧苗圃建設(shè)與運營管理合同3篇
- 二零二五年度面包磚施工安全管理評估合同3篇
- 2025年度綠色能源項目投資與建設(shè)合同4篇
- 二零二五年度醫(yī)療健康A(chǔ)PP數(shù)據(jù)共享合同3篇
- 二零二五年度某三期護坡樁工程施工合同合同解除與終止合同4篇
- 二零二五年度房地產(chǎn)營銷推廣合同范本
- 二零二五版抵押貸款合同條款變更對借款合同影響評估3篇
- 二零二五年度農(nóng)產(chǎn)品市場拓展代理銷售合同
- 新人教版五年級小學(xué)數(shù)學(xué)全冊奧數(shù)(含答案)
- 風(fēng)電場升壓站培訓(xùn)課件
- 收納盒注塑模具設(shè)計(論文-任務(wù)書-開題報告-圖紙)
- 博弈論全套課件
- CONSORT2010流程圖(FlowDiagram)【模板】文檔
- 腦電信號處理與特征提取
- 高中數(shù)學(xué)知識點全總結(jié)(電子版)
- GB/T 10322.7-2004鐵礦石粒度分布的篩分測定
- 2023新譯林版新教材高中英語必修一重點詞組歸納總結(jié)
- 蘇教版四年級數(shù)學(xué)下冊第3單元第2課時“常見的數(shù)量關(guān)系”教案
- 基于協(xié)同過濾算法的電影推薦系統(tǒng)設(shè)計
評論
0/150
提交評論