2024屆黑龍江省哈爾濱八中高考數(shù)學(xué)試題模擬卷_第1頁
2024屆黑龍江省哈爾濱八中高考數(shù)學(xué)試題模擬卷_第2頁
2024屆黑龍江省哈爾濱八中高考數(shù)學(xué)試題模擬卷_第3頁
2024屆黑龍江省哈爾濱八中高考數(shù)學(xué)試題模擬卷_第4頁
2024屆黑龍江省哈爾濱八中高考數(shù)學(xué)試題模擬卷_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2023屆黑龍江省哈爾濱八中高考數(shù)學(xué)試題模擬卷(5)注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.存在點(diǎn)在橢圓上,且點(diǎn)M在第一象限,使得過點(diǎn)M且與橢圓在此點(diǎn)的切線垂直的直線經(jīng)過點(diǎn),則橢圓離心率的取值范圍是()A. B. C. D.2.為比較甲、乙兩名高二學(xué)生的數(shù)學(xué)素養(yǎng),對課程標(biāo)準(zhǔn)中規(guī)定的數(shù)學(xué)六大素養(yǎng)進(jìn)行指標(biāo)測驗(yàn)(指標(biāo)值滿分為5分,分值高者為優(yōu)),根據(jù)測驗(yàn)情況繪制了如圖所示的六大素養(yǎng)指標(biāo)雷達(dá)圖,則下面敘述正確的是()A.乙的數(shù)據(jù)分析素養(yǎng)優(yōu)于甲B.乙的數(shù)學(xué)建模素養(yǎng)優(yōu)于數(shù)學(xué)抽象素養(yǎng)C.甲的六大素養(yǎng)整體水平優(yōu)于乙D.甲的六大素養(yǎng)中數(shù)據(jù)分析最差3.點(diǎn)為的三條中線的交點(diǎn),且,,則的值為()A. B. C. D.4.函數(shù)在上單調(diào)遞增,則實(shí)數(shù)的取值范圍是()A. B. C. D.5.山東煙臺蘋果因“果形端正、色澤艷麗、果肉甜脆、香氣濃郁”享譽(yù)國內(nèi)外.據(jù)統(tǒng)計,煙臺蘋果(把蘋果近似看成球體)的直徑(單位:)服從正態(tài)分布,則直徑在內(nèi)的概率為()附:若,則,.A.0.6826 B.0.8413 C.0.8185 D.0.95446.在復(fù)平面內(nèi),復(fù)數(shù)對應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.我國南北朝時的數(shù)學(xué)著作《張邱建算經(jīng)》有一道題為:“今有十等人,每等一人,宮賜金以等次差降之,上三人先入,得金四斤,持出,下三人后入得金三斤,持出,中間四人未到者,亦依次更給,問各得金幾何?”則在該問題中,等級較高的二等人所得黃金比等級較低的九等人所得黃金()A.多1斤 B.少1斤 C.多斤 D.少斤8.已知復(fù)數(shù),滿足,則()A.1 B. C. D.59.已知集合,,則中元素的個數(shù)為()A.3 B.2 C.1 D.010.已知函數(shù),,的零點(diǎn)分別為,,,則()A. B.C. D.11.已知正三棱錐的所有頂點(diǎn)都在球的球面上,其底面邊長為4,、、分別為側(cè)棱,,的中點(diǎn).若在三棱錐內(nèi),且三棱錐的體積是三棱錐體積的4倍,則此外接球的體積與三棱錐體積的比值為()A. B. C. D.12.若實(shí)數(shù)、滿足,則的最小值是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.二項(xiàng)式的展開式中所有項(xiàng)的二項(xiàng)式系數(shù)之和是64,則展開式中的常數(shù)項(xiàng)為______.14.在邊長為的菱形中,點(diǎn)在菱形所在的平面內(nèi).若,則_____.15.已知函數(shù),,若函數(shù)有3個不同的零點(diǎn)x1,x2,x3(x1<x2<x3),則的取值范圍是_________.16.已知f(x)為偶函數(shù),當(dāng)x≤0時,f(x)=e-x-1-x,則曲線y=f(x)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)近幾年一種新奇水果深受廣大消費(fèi)者的喜愛,一位農(nóng)戶發(fā)揮聰明才智,把這種露天種植的新奇水果搬到了大棚里,收到了很好的經(jīng)濟(jì)效益.根據(jù)資料顯示,產(chǎn)出的新奇水果的箱數(shù)x(單位:十箱)與成本y(單位:千元)的關(guān)系如下:x13412y51.522.58y與x可用回歸方程(其中,為常數(shù))進(jìn)行模擬.(Ⅰ)若該農(nóng)戶產(chǎn)出的該新奇水果的價格為150元/箱,試預(yù)測該新奇水果100箱的利潤是多少元.|.(Ⅱ)據(jù)統(tǒng)計,10月份的連續(xù)11天中該農(nóng)戶每天為甲地配送的該新奇水果的箱數(shù)的頻率分布直方圖如圖所示.(i)若從箱數(shù)在內(nèi)的天數(shù)中隨機(jī)抽取2天,估計恰有1天的水果箱數(shù)在內(nèi)的概率;(ⅱ)求這11天該農(nóng)戶每天為甲地配送的該新奇水果的箱數(shù)的平均值.(每組用該組區(qū)間的中點(diǎn)值作代表)參考數(shù)據(jù)與公式:設(shè),則0.541.81.530.45線性回歸直線中,,.18.(12分)等差數(shù)列的前項(xiàng)和為,已知,.(Ⅰ)求數(shù)列的通項(xiàng)公式及前項(xiàng)和為;(Ⅱ)設(shè)為數(shù)列的前項(xiàng)的和,求證:.19.(12分)在以ABCDEF為頂點(diǎn)的五面體中,底面ABCD為菱形,∠ABC=120°,AB=AE=ED=2EF,EFAB,點(diǎn)G為CD中點(diǎn),平面EAD⊥平面ABCD.(1)證明:BD⊥EG;(2)若三棱錐,求菱形ABCD的邊長.20.(12分)已知函數(shù),曲線在點(diǎn)處的切線方程為.(1)求,的值;(2)證明函數(shù)存在唯一的極大值點(diǎn),且.21.(12分)設(shè)函數(shù).(1)時,求的單調(diào)區(qū)間;(2)當(dāng)時,設(shè)的最小值為,若恒成立,求實(shí)數(shù)t的取值范圍.22.(10分)如圖,三棱柱中,側(cè)面為菱形,.(1)求證:平面;(2)若,求二面角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.D【解析】

根據(jù)題意利用垂直直線斜率間的關(guān)系建立不等式再求解即可.【詳解】因?yàn)檫^點(diǎn)M橢圓的切線方程為,所以切線的斜率為,由,解得,即,所以,所以.故選:D【點(diǎn)睛】本題主要考查了建立不等式求解橢圓離心率的問題,屬于基礎(chǔ)題.2.C【解析】

根據(jù)題目所給圖像,填寫好表格,由表格數(shù)據(jù)選出正確選項(xiàng).【詳解】根據(jù)雷達(dá)圖得到如下數(shù)據(jù):數(shù)學(xué)抽象邏輯推理數(shù)學(xué)建模直觀想象數(shù)學(xué)運(yùn)算數(shù)據(jù)分析甲454545乙343354由數(shù)據(jù)可知選C.【點(diǎn)睛】本題考查統(tǒng)計問題,考查數(shù)據(jù)處理能力和應(yīng)用意識.3.B【解析】

可畫出圖形,根據(jù)條件可得,從而可解出,然后根據(jù),進(jìn)行數(shù)量積的運(yùn)算即可求出.【詳解】如圖:點(diǎn)為的三條中線的交點(diǎn),由可得:,又因,,.故選:B【點(diǎn)睛】本題考查三角形重心的定義及性質(zhì),向量加法的平行四邊形法則,向量加法、減法和數(shù)乘的幾何意義,向量的數(shù)乘運(yùn)算及向量的數(shù)量積的運(yùn)算,考查運(yùn)算求解能力,屬于中檔題.4.B【解析】

對分類討論,當(dāng),函數(shù)在單調(diào)遞減,當(dāng),根據(jù)對勾函數(shù)的性質(zhì),求出單調(diào)遞增區(qū)間,即可求解.【詳解】當(dāng)時,函數(shù)在上單調(diào)遞減,所以,的遞增區(qū)間是,所以,即.故選:B.【點(diǎn)睛】本題考查函數(shù)單調(diào)性,熟練掌握簡單初等函數(shù)性質(zhì)是解題關(guān)鍵,屬于基礎(chǔ)題.5.C【解析】

根據(jù)服從的正態(tài)分布可得,,將所求概率轉(zhuǎn)化為,結(jié)合正態(tài)分布曲線的性質(zhì)可求得結(jié)果.【詳解】由題意,,,則,,所以,.故果實(shí)直徑在內(nèi)的概率為0.8185.故選:C【點(diǎn)睛】本題考查根據(jù)正態(tài)分布求解待定區(qū)間的概率問題,考查了正態(tài)曲線的對稱性,屬于基礎(chǔ)題.6.B【解析】

化簡復(fù)數(shù)為的形式,然后判斷復(fù)數(shù)的對應(yīng)點(diǎn)所在象限,即可求得答案.【詳解】對應(yīng)的點(diǎn)的坐標(biāo)為在第二象限故選:B.【點(diǎn)睛】本題主要考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的代數(shù)表示法及其幾何意義,屬于基礎(chǔ)題.7.C【解析】設(shè)這十等人所得黃金的重量從大到小依次組成等差數(shù)列則由等差數(shù)列的性質(zhì)得,故選C8.A【解析】

首先根據(jù)復(fù)數(shù)代數(shù)形式的除法運(yùn)算求出,求出的模即可.【詳解】解:,,故選:A【點(diǎn)睛】本題考查了復(fù)數(shù)求模問題,考查復(fù)數(shù)的除法運(yùn)算,屬于基礎(chǔ)題.9.C【解析】

集合表示半圓上的點(diǎn),集合表示直線上的點(diǎn),聯(lián)立方程組求得方程組解的個數(shù),即為交集中元素的個數(shù).【詳解】由題可知:集合表示半圓上的點(diǎn),集合表示直線上的點(diǎn),聯(lián)立與,可得,整理得,即,當(dāng)時,,不滿足題意;故方程組有唯一的解.故.故選:C.【點(diǎn)睛】本題考查集合交集的求解,涉及圓和直線的位置關(guān)系的判斷,屬基礎(chǔ)題.10.C【解析】

轉(zhuǎn)化函數(shù),,的零點(diǎn)為與,,的交點(diǎn),數(shù)形結(jié)合,即得解.【詳解】函數(shù),,的零點(diǎn),即為與,,的交點(diǎn),作出與,,的圖象,如圖所示,可知故選:C【點(diǎn)睛】本題考查了數(shù)形結(jié)合法研究函數(shù)的零點(diǎn),考查了學(xué)生轉(zhuǎn)化劃歸,數(shù)形結(jié)合的能力,屬于中檔題.11.D【解析】

如圖,平面截球所得截面的圖形為圓面,計算,由勾股定理解得,此外接球的體積為,三棱錐體積為,得到答案.【詳解】如圖,平面截球所得截面的圖形為圓面.正三棱錐中,過作底面的垂線,垂足為,與平面交點(diǎn)記為,連接、.依題意,所以,設(shè)球的半徑為,在中,,,,由勾股定理:,解得,此外接球的體積為,由于平面平面,所以平面,球心到平面的距離為,則,所以三棱錐體積為,所以此外接球的體積與三棱錐體積比值為.故選:D.【點(diǎn)睛】本題考查了三棱錐的外接球問題,三棱錐體積,球體積,意在考查學(xué)生的計算能力和空間想象能力.12.D【解析】

根據(jù)約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,求出最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)得答案【詳解】作出不等式組所表示的可行域如下圖所示:聯(lián)立,得,可得點(diǎn),由得,平移直線,當(dāng)該直線經(jīng)過可行域的頂點(diǎn)時,該直線在軸上的截距最小,此時取最小值,即.故選:D.【點(diǎn)睛】本題考查簡單的線性規(guī)劃,考查數(shù)形結(jié)合的解題思想方法,是基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

由二項(xiàng)式系數(shù)性質(zhì)求出,由二項(xiàng)展開式通項(xiàng)公式得出常數(shù)項(xiàng)的項(xiàng)數(shù),從而得常數(shù)項(xiàng).【詳解】由題意,.展開式通項(xiàng)為,由得,∴常數(shù)項(xiàng)為.故答案為:.【點(diǎn)睛】本題考查二項(xiàng)式定理,考查二項(xiàng)式系數(shù)的性質(zhì),掌握二項(xiàng)展開式通項(xiàng)公式是解題關(guān)鍵.14.【解析】

以菱形的中心為坐標(biāo)原點(diǎn)建立平面直角坐標(biāo)系,再設(shè),根據(jù)求出的坐標(biāo),進(jìn)而求得即可.【詳解】解:連接設(shè)交于點(diǎn)以點(diǎn)為原點(diǎn),分別以直線為軸,建立如圖所示的平面直角坐標(biāo)系,則:設(shè)得,解得,,或,顯然得出的是定值,取則,.故答案為:.【點(diǎn)睛】本題主要考查了建立平面直角坐標(biāo)系求解向量數(shù)量積的有關(guān)問題,屬于中檔題.15.【解析】

先根據(jù)題意,求出的解得或,然后求出f(x)的導(dǎo)函數(shù),求其單調(diào)性以及最值,在根據(jù)題意求出函數(shù)有3個不同的零點(diǎn)x1,x2,x3(x1<x2<x3),分情況討論求出的取值范圍.【詳解】解:令t=f(x),函數(shù)有3個不同的零點(diǎn),即+m=0有兩個不同的解,解之得即或因?yàn)榈膶?dǎo)函數(shù),令,解得x>e,,解得0<x<e,可得f(x)在(0,e)遞增,在遞減;f(x)的最大值為,且且f(1)=0;要使函數(shù)有3個不同的零點(diǎn),(1)有兩個不同的解,此時有一個解;(2)有兩個不同的解,此時有一個解當(dāng)有兩個不同的解,此時有一個解,此時,不符合題意;或是不符合題意;所以只能是解得,此時=-m,此時有兩個不同的解,此時有一個解此時,不符合題意;或是不符合題意;所以只能是解得,此時=,綜上:的取值范圍是故答案為【點(diǎn)睛】本題主要考查了函數(shù)與導(dǎo)函數(shù)的綜合,考查到了函數(shù)的零點(diǎn),導(dǎo)函數(shù)的應(yīng)用,以及數(shù)形結(jié)合的思想、分類討論的思想,屬于綜合性極強(qiáng)的題目,屬于難題.16.y=2x【解析】試題分析:當(dāng)x>0時,-x<0,則f(-x)=ex-1+x.又因?yàn)閒(x)為偶函數(shù),所以f(x)=f(-x)=ex-1+x,所以f'【考點(diǎn)】函數(shù)的奇偶性、解析式及導(dǎo)數(shù)的幾何意義【知識拓展】本題題型可歸納為“已知當(dāng)x>0時,函數(shù)y=f(x),則當(dāng)x<0時,求函數(shù)的解析式”.有如下結(jié)論:若函數(shù)f(x)為偶函數(shù),則當(dāng)x<0時,函數(shù)的解析式為y=-f(x);若f(x)為奇函數(shù),則函數(shù)的解析式為y=-f(-x).三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(Ⅰ)1131;(Ⅱ)(i);(ⅱ)125箱【解析】

(Ⅰ)根據(jù)參考數(shù)據(jù)得到和,代入得到回歸直線方程,,再代入求成本,最后代入利潤公式;(Ⅱ)(?。┦紫确謩e計算水果箱數(shù)在和內(nèi)的天數(shù),再用編號列舉基本事件的方法求概率;(ⅱ)根據(jù)頻率分布直方圖直接計算結(jié)果.【詳解】(Ⅰ)根據(jù)題意,,所以,所以.又,所以.所以時,(千元),即該新奇水果100箱的成本為8314元,故該新奇水果100箱的利潤.(Ⅱ)(i)根據(jù)頻率分布直方圖,可知水果箱數(shù)在內(nèi)的天數(shù)為設(shè)這兩天分別為a,b,水果箱數(shù)在內(nèi)的天數(shù)為,設(shè)這四天分別為A,B,C,D,所以隨機(jī)抽取2天的基本結(jié)果為,,,,,,,,,,,,,,,共15種.滿足恰有1天的水果箱數(shù)在內(nèi)的結(jié)果為,,,,,,,,共8種,所以估計恰有1天的水果箱數(shù)在內(nèi)的概率為.(ⅱ)這11天該農(nóng)戶每天為甲地配送的該新奇水果的箱數(shù)的平均值為(箱).【點(diǎn)睛】本題考查考查回歸直線方程,統(tǒng)計,概率,均值的綜合問題,意在考查分析數(shù)據(jù),應(yīng)用數(shù)據(jù),解決問題的能力,屬于中檔題型.18.(Ⅰ),(Ⅱ)見解析【解析】

(Ⅰ)根據(jù)等差數(shù)列公式直接計算得到答案.(Ⅱ),根據(jù)裂項(xiàng)求和法計算得到得到證明.【詳解】(Ⅰ)等差數(shù)列的公差為,由,得,,即,,解得,.∴,.(Ⅱ),∴,∴,即.【點(diǎn)睛】本題考查了等差數(shù)列的基本量的計算,裂項(xiàng)求和,意在考查學(xué)生對于數(shù)列公式方法的靈活運(yùn)用.19.(1)詳見解析;(2).【解析】

(1)取中點(diǎn),連,可得,結(jié)合平面EAD⊥平面ABCD,可證平面ABCD,進(jìn)而有,再由底面是菱形可得,可得,可證得平面,即可證明結(jié)論;(2)設(shè)底面邊長為,由EFAB,AB=2EF,,求出體積,建立的方程,即可求出結(jié)論.【詳解】(1)取中點(diǎn),連,底面ABCD為菱形,,,平面EAD⊥平面ABCD,平面平面平面,平面平面,底面ABCD為菱形,,為中點(diǎn),,平面,平面平面,;(2)設(shè)菱形ABCD的邊長為,則,,,,,所以菱形ABCD的邊長為.【點(diǎn)睛】本題考查線線垂直的證明和椎體的體積,注意空間中垂直關(guān)系之間的相互轉(zhuǎn)化,體積問題要熟練應(yīng)用等體積方法,屬于中檔題.20.(1)(2)證明見解析【解析】

(1)求導(dǎo),可得(1),(1),結(jié)合已知切線方程即可求得,的值;(2)利用導(dǎo)數(shù)可得,,再構(gòu)造新函數(shù),利用導(dǎo)數(shù)求其最值即可得證.【詳解】(1)函數(shù)的定義域?yàn)椋?,則(1),(1),故曲線在點(diǎn),(1)處的切線方程為,又曲線在點(diǎn),(1)處的切線方程為,,;(2)證明:由(1)知,,則,令,則,易知在單調(diào)遞減,又,(1),故存在,使得,且當(dāng)時,,單調(diào)遞增,當(dāng),時,,單調(diào)遞減,由于,(1),(2),故存在,使得,且當(dāng)時,,,單調(diào)遞增,當(dāng),時,,,單調(diào)遞減,故函數(shù)存在唯一的極大值點(diǎn),且,即,則,令,則,故在上單調(diào)遞增,由于,故(2),即,.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義以及利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,極值及最值,考查推理論證能力,屬于中檔題.21.(1)的增區(qū)間為,減區(qū)間為;(2).【解析】

(1)求出函數(shù)的導(dǎo)數(shù),由于參數(shù)的范圍對導(dǎo)數(shù)的符號有影響,對參數(shù)分類,再研究函數(shù)的單調(diào)區(qū)間;(2)由(1)的結(jié)論,求出的表達(dá)式,由于恒成立,故求出的最大值,即得實(shí)數(shù)的取值范圍的左端點(diǎn).【詳解】解:(1)解:,當(dāng)時,,解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論