新高考數(shù)學(xué)二輪培優(yōu)大題優(yōu)練12 導(dǎo)數(shù)研究根的個數(shù)問題(教師版)_第1頁
新高考數(shù)學(xué)二輪培優(yōu)大題優(yōu)練12 導(dǎo)數(shù)研究根的個數(shù)問題(教師版)_第2頁
新高考數(shù)學(xué)二輪培優(yōu)大題優(yōu)練12 導(dǎo)數(shù)研究根的個數(shù)問題(教師版)_第3頁
新高考數(shù)學(xué)二輪培優(yōu)大題優(yōu)練12 導(dǎo)數(shù)研究根的個數(shù)問題(教師版)_第4頁
新高考數(shù)學(xué)二輪培優(yōu)大題優(yōu)練12 導(dǎo)數(shù)研究根的個數(shù)問題(教師版)_第5頁
已閱讀5頁,還剩7頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

導(dǎo)數(shù)研究根的個數(shù)問題導(dǎo)數(shù)研究根的個數(shù)問題大題優(yōu)練12優(yōu)選例題優(yōu)選例題例1.已知函數(shù)SKIPIF1<0,(SKIPIF1<0).(1)討論函數(shù)SKIPIF1<0的單調(diào)性;(2)若函數(shù)SKIPIF1<0有兩個零點,求SKIPIF1<0的取值范圍.【答案】(1)見解析;(2)SKIPIF1<0.【解析】(1)SKIPIF1<0定義域為SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0.當(dāng)SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上恒成立,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;當(dāng)SKIPIF1<0時,若SKIPIF1<0時,SKIPIF1<0;若SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,綜上所述:當(dāng)SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;當(dāng)SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減.(2)令SKIPIF1<0,則SKIPIF1<0,過點SKIPIF1<0作SKIPIF1<0的切線,設(shè)切點為SKIPIF1<0,則切線斜率SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0切線斜率SKIPIF1<0,若SKIPIF1<0有兩個零點,則SKIPIF1<0與SKIPIF1<0有兩個不同的交點,如下圖所示:由圖象可知:當(dāng)SKIPIF1<0時,SKIPIF1<0與SKIPIF1<0有兩個不同的交點,即若函數(shù)SKIPIF1<0有兩個零點,SKIPIF1<0的取值范圍為SKIPIF1<0.例2.已知函數(shù)SKIPIF1<0.(1)討論SKIPIF1<0的單調(diào)性;(2)設(shè)函數(shù)SKIPIF1<0,若SKIPIF1<0在SKIPIF1<0上有且只有一個零點,求m的取值范圍.【答案】(1)當(dāng)SKIPIF1<0時,SKIPIF1<0在R上單調(diào)遞增;當(dāng)SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增;(2)SKIPIF1<0或SKIPIF1<0.【解析】(1)SKIPIF1<0,①若SKIPIF1<0,則SKIPIF1<0,∴SKIPIF1<0在R上單調(diào)遞增;②若SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0.當(dāng)SKIPIF1<0時,SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0,∴SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,綜上,當(dāng)SKIPIF1<0時,SKIPIF1<0在R上單調(diào)遞增;當(dāng)SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增.(2)由題意知SKIPIF1<0,則SKIPIF1<0,易知SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,且SKIPIF1<0.①若SKIPIF1<0,則SKIPIF1<0,∴SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,∵SKIPIF1<0在SKIPIF1<0上有且只有一個零點,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,∴當(dāng)SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上有且只有一個零點;②若SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,∴存在SKIPIF1<0,使SKIPIF1<0,即SKIPIF1<0,∴當(dāng)SKIPIF1<0時,SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0,∴SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上有且只有一個零點,∴SKIPIF1<0,即SKIPIF1<0.把SKIPIF1<0代入上式可知SKIPIF1<0,因為SKIPIF1<0,∴SKIPIF1<0,從而SKIPIF1<0.綜上,當(dāng)SKIPIF1<0或SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上有且只有一個零點.例3.已知函數(shù)SKIPIF1<0.(1)當(dāng)SKIPIF1<0時,一次函數(shù)SKIPIF1<0對任意SKIPIF1<0,SKIPIF1<0恒成立,求SKIPIF1<0的表達(dá)式;(2)討論關(guān)于x的方程SKIPIF1<0解的個數(shù).【答案】(1)SKIPIF1<0;(2)見解析.【解析】(1)當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0,可設(shè)SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,所以SKIPIF1<0,又因為SKIPIF1<0,所以SKIPIF1<0,設(shè)SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上恒成立,所以SKIPIF1<0在SKIPIF1<0上恒成立,所以SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,又由SKIPIF1<0,可得SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞增;當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞減,所以當(dāng)SKIPIF1<0時,SKIPIF1<0取得最大值,最大值為SKIPIF1<0,所以SKIPIF1<0,綜上SKIPIF1<0.(2)由方程SKIPIF1<0,整理可得SKIPIF1<0,即SKIPIF1<0,可得SKIPIF1<0,令SKIPIF1<0,可得SKIPIF1<0,即SKIPIF1<0,設(shè)SKIPIF1<0,可得SKIPIF1<0.①當(dāng)SKIPIF1<0時,可得SKIPIF1<0,此時SKIPIF1<0單調(diào)遞減,又由SKIPIF1<0,所以此時函數(shù)SKIPIF1<0在SKIPIF1<0上只有一個零點,即方程只有一個零點;②當(dāng)SKIPIF1<0可得SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0.(i)當(dāng)SKIPIF1<0時,即SKIPIF1<0時,可得SKIPIF1<0,即SKIPIF1<0,此時SKIPIF1<0單調(diào)遞增,又由SKIPIF1<0,所以此時函數(shù)SKIPIF1<0在SKIPIF1<0上只有一個零點,即方程只有一個零點;(ii)當(dāng)SKIPIF1<0時,即SKIPIF1<0時,此時SKIPIF1<0,即方程SKIPIF1<0有兩解,且SKIPIF1<0,SKIPIF1<0,不妨設(shè)SKIPIF1<0,則當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞增;當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞減,當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0取得極大值SKIPIF1<0,當(dāng)SKIPIF1<0,函數(shù)SKIPIF1<0取得極小值SKIPIF1<0,又因為SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上有唯一的解.因為SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,可得SKIPIF1<0,所以SKIPIF1<0且SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上恰有一根,所以可得函數(shù)SKIPIF1<0在SKIPIF1<0上恰有三根,綜上可得,當(dāng)SKIPIF1<0或SKIPIF1<0時,方程SKIPIF1<0恰有一根;當(dāng)SKIPIF1<0時,方程SKIPIF1<0恰有三根.

模擬優(yōu)練模擬優(yōu)練1.已知函數(shù)SKIPIF1<0在SKIPIF1<0處取得極值.(1)求實數(shù)SKIPIF1<0的值;(2)若函數(shù)SKIPIF1<0在SKIPIF1<0內(nèi)有零點,求實數(shù)SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0.【解析】(1)SKIPIF1<0,SKIPIF1<0在SKIPIF1<0處取得極值,SKIPIF1<0,所以SKIPIF1<0.經(jīng)驗證SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0處取得極值.(2)由(1)知SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0極值點為SKIPIF1<0,SKIPIF1<0.將SKIPIF1<0,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0內(nèi)的取值列表如下:SKIPIF1<00SKIPIF1<01SKIPIF1<02SKIPIF1<0/-0+/SKIPIF1<0SKIPIF1<0極小值SKIPIF1<0SKIPIF1<0由此可得,SKIPIF1<0在SKIPIF1<0內(nèi)有零點,只需SKIPIF1<0,所以SKIPIF1<0.2.已知函數(shù)SKIPIF1<0.(1)求曲線SKIPIF1<0在點SKIPIF1<0處的切線SKIPIF1<0與兩坐標(biāo)軸圍成的三角形的面積;(2)若方程SKIPIF1<0在SKIPIF1<0上有兩個不同的解,求實數(shù)SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0.【解析】(1)函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,SKIPIF1<0,所以曲線SKIPIF1<0在點SKIPIF1<0處的切線SKIPIF1<0的斜率SKIPIF1<0.又SKIPIF1<0,所以切線SKIPIF1<0的方程為SKIPIF1<0,即SKIPIF1<0,所以切線SKIPIF1<0與兩坐標(biāo)軸的交點坐標(biāo)分別為SKIPIF1<0,SKIPIF1<0,所以切線SKIPIF1<0與兩坐標(biāo)軸圍成的三角形的面積SKIPIF1<0.(2)方程SKIPIF1<0,即SKIPIF1<0,因為SKIPIF1<0,所以分離參數(shù)得SKIPIF1<0.記SKIPIF1<0,則SKIPIF1<0,記SKIPIF1<0,則SKIPIF1<0,記SKIPIF1<0,顯然SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,故當(dāng)SKIPIF1<0時,SKIPIF1<0,所以當(dāng)SKIPIF1<0時,SKIPIF1<0,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,而SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0上有且僅有一個零點SKIPIF1<0.所以當(dāng)SKIPIF1<0時,SKIPIF1<0,即SKIPIF1<0,函數(shù)SKIPIF1<0單調(diào)遞增;當(dāng)SKIPIF1<0時,SKIPIF1<0,即SKIPIF1<0,函數(shù)SKIPIF1<0單調(diào)遞減,所以當(dāng)SKIPIF1<0時,SKIPIF1<0,而SKIPIF1<0,SKIPIF1<0,由題意,原方程在SKIPIF1<0上有兩個不同的解,即SKIPIF1<0在SKIPIF1<0上有兩個不同的解,即直線SKIPIF1<0與函數(shù)SKIPIF1<0的圖象有兩個不同的交點,數(shù)形結(jié)合可得實數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0.3.已知函數(shù)SKIPIF1<0.(1)求曲線SKIPIF1<0在點SKIPIF1<0處的切線方程;(2)設(shè)SKIPIF1<0,若函數(shù)SKIPIF1<0在SKIPIF1<0上恰有兩個不同的零點,求實數(shù)t的取值范圍.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0.【解析】(1)由題意,函數(shù)定義域為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0所求切線方程為SKIPIF1<0,即SKIPIF1<0.(2)函數(shù)SKIPIF1<0在SKIPIF1<0上恰有兩個不同的零點,等價于SKIPIF1<0在SKIPIF1<0上恰有兩個不同的實根,等價于SKIPIF1<0在SKIPIF1<0上恰有兩個不同的實根,令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0遞減;當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0遞增,故SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0.4.已知函數(shù)SKIPIF1<0,其中SKIPIF1<0.(1)若SKIPIF1<0存在唯一極值點,且極值為0,求SKIPIF1<0的值;(2)討論SKIPIF1<0在區(qū)間SKIPIF1<0上的零點個數(shù).【答案】(1)SKIPIF1<0或SKIPIF1<0;(2)答案見解析.【解析】(1)由已知,可得SKIPIF1<0.①若SKIPIF1<0,則當(dāng)SKIPIF1<0時,SKIPIF1<0恒成立,∴SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,與SKIPIF1<0存在極值點矛盾;②若SKIPIF1<0,則由SKIPIF1<0,得SKIPIF1<0.∴當(dāng)SKIPIF1<0時,SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0,∴SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,∴SKIPIF1<0存在唯一極小值點SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0或SKIPIF1<0.(2)①當(dāng)SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上恒成立,∴SKIPIF1<0在SKIPIF1<0上單調(diào)遞增.∵SKIPIF1<0,SKIPIF1<0,(i)當(dāng)SKIPIF1<0時,SKIPIF1<0;(ii)當(dāng)SKIPIF1<0時,SKIPIF1<0,∴SKIPIF1<0,∴由零點存在性定理,知SKIPIF1<0在SKIPIF1<0上有1個零點;②當(dāng)SKIPIF1<0時,∵當(dāng)SKIPIF1<0時,SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0,∴SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,∴SKIPIF1<0.(i)當(dāng)SKIPIF1<0時,SKIPIF1<0,此時SKIPIF1<0在SKIPIF1<0上有1個零點;(ii)當(dāng)SKIPIF1<0時,SKIPIF1<0,此時SKIPIF1<0在SKIPIF1<0上無零點;(iii)當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0.(a)當(dāng)SKIPIF1<0,即SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上有1個零點;(b)當(dāng)SKIPIF1<0,即SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上有2個零點;③當(dāng)SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上恒成立,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減.∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0在SKIPIF1<0上有1個零點,綜上,當(dāng)SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上無零點;當(dāng)SKIPIF1<0或SKIPIF1<0或SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上有1個零點;當(dāng)SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上有2個零點.5.已知函數(shù)SKIPIF1<0.(1)討論函數(shù)SKIPIF1<0的單調(diào)性;(2)設(shè)SKIPIF1<0,求函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上的零點的個數(shù).(附:對于任意SKIPIF1<0,都有SKIPIF1<0.)【答案】(1)SKIPIF1<0在SKIPIF1<0,SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增;(2)存在三個零點.【解析】(1)SKIPIF1<0的定義域為SKIPIF1<0,SKIPIF1<0.設(shè)SKIPIF1<0,①當(dāng)SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減;②當(dāng)SKIPIF1<0,即SKIPIF1<0時,令SKIPIF1<0,得SKIPIF

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論