新高考數(shù)學(xué)一輪復(fù)習(xí)考點(diǎn)精講練+易錯(cuò)題型第25講 三角函數(shù)的圖像與性質(zhì)(解析版)_第1頁(yè)
新高考數(shù)學(xué)一輪復(fù)習(xí)考點(diǎn)精講練+易錯(cuò)題型第25講 三角函數(shù)的圖像與性質(zhì)(解析版)_第2頁(yè)
新高考數(shù)學(xué)一輪復(fù)習(xí)考點(diǎn)精講練+易錯(cuò)題型第25講 三角函數(shù)的圖像與性質(zhì)(解析版)_第3頁(yè)
新高考數(shù)學(xué)一輪復(fù)習(xí)考點(diǎn)精講練+易錯(cuò)題型第25講 三角函數(shù)的圖像與性質(zhì)(解析版)_第4頁(yè)
新高考數(shù)學(xué)一輪復(fù)習(xí)考點(diǎn)精講練+易錯(cuò)題型第25講 三角函數(shù)的圖像與性質(zhì)(解析版)_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第25講三角函數(shù)的圖像與性質(zhì)【基礎(chǔ)知識(shí)網(wǎng)絡(luò)圖】應(yīng)用應(yīng)用三角函數(shù)的圖象與性質(zhì)正弦函數(shù)的圖象與性質(zhì)余弦函數(shù)的圖象與性質(zhì)正切函數(shù)的圖象與性質(zhì)【基礎(chǔ)知識(shí)全通關(guān)】一、正弦函數(shù)SKIPIF1<0,余弦函數(shù)SKIPIF1<0,正切函數(shù)SKIPIF1<0的圖象與性質(zhì)函數(shù)SKIPIF1<0SKIPIF1<0SKIPIF1<0圖象定義域SKIPIF1<0SKIPIF1<0SKIPIF1<0值域SKIPIF1<0SKIPIF1<0SKIPIF1<0最值當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.既無(wú)最大值,也無(wú)最小值周期性最小正周期為SKIPIF1<0最小正周期為SKIPIF1<0最小正周期為SKIPIF1<0奇偶性SKIPIF1<0,奇函數(shù)SKIPIF1<0,偶函數(shù)SKIPIF1<0,奇函數(shù)單調(diào)性在SKIPIF1<0上是增函數(shù);在SKIPIF1<0上是減函數(shù).在SKIPIF1<0上是增函數(shù);在SKIPIF1<0上是減函數(shù).在SKIPIF1<0上是增函數(shù).對(duì)稱(chēng)性對(duì)稱(chēng)中心SKIPIF1<0;對(duì)稱(chēng)軸SKIPIF1<0,既是中心對(duì)稱(chēng)圖形又是軸對(duì)稱(chēng)圖形.對(duì)稱(chēng)中心SKIPIF1<0;對(duì)稱(chēng)軸SKIPIF1<0,既是中心對(duì)稱(chēng)圖形又是軸對(duì)稱(chēng)圖形.對(duì)稱(chēng)中心SKIPIF1<0;無(wú)對(duì)稱(chēng)軸,是中心對(duì)稱(chēng)圖形但不是軸對(duì)稱(chēng)圖形.二、函數(shù)SKIPIF1<0的圖象與性質(zhì)1.函數(shù)SKIPIF1<0的圖象的畫(huà)法(1)變換作圖法由函數(shù)SKIPIF1<0的圖象通過(guò)變換得到SKIPIF1<0(A>0,ω>0)的圖象,有兩種主要途徑:“先平移后伸縮”與“先伸縮后平移”.如下圖.(2)五點(diǎn)作圖法找五個(gè)關(guān)鍵點(diǎn),分別為使y取得最小值、最大值的點(diǎn)和曲線(xiàn)與x軸的交點(diǎn).其步驟為:①先確定最小正周期T=SKIPIF1<0,在一個(gè)周期內(nèi)作出圖象;②令SKIPIF1<0,令X分別取0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,求出對(duì)應(yīng)的x值,列表如下:由此可得五個(gè)關(guān)鍵點(diǎn);③描點(diǎn)畫(huà)圖,再利用函數(shù)的周期性把所得簡(jiǎn)圖向左右分別擴(kuò)展,從而得到SKIPIF1<0的簡(jiǎn)圖.2.函數(shù)SKIPIF1<0(A>0,ω>0)的性質(zhì)(1)奇偶性:SKIPIF1<0時(shí),函數(shù)SKIPIF1<0為奇函數(shù);SKIPIF1<0時(shí),函數(shù)SKIPIF1<0為偶函數(shù).(2)周期性:SKIPIF1<0存在周期性,其最小正周期為T(mén)=SKIPIF1<0.(3)單調(diào)性:根據(jù)y=sint和t=SKIPIF1<0的單調(diào)性來(lái)研究,由SKIPIF1<0得單調(diào)增區(qū)間;由SKIPIF1<0得單調(diào)減區(qū)間.(4)對(duì)稱(chēng)性:利用y=sinx的對(duì)稱(chēng)中心為SKIPIF1<0求解,令SKIPIF1<0,求得x.利用y=sinx的對(duì)稱(chēng)軸為SKIPIF1<0求解,令SKIPIF1<0,得其對(duì)稱(chēng)軸.3.函數(shù)SKIPIF1<0(A>0,ω>0)的物理意義當(dāng)函數(shù)SKIPIF1<0(A>0,ω>0,SKIPIF1<0)表示一個(gè)簡(jiǎn)諧振動(dòng)量時(shí),則A叫做振幅,T=SKIPIF1<0叫做周期,f=SKIPIF1<0叫做頻率,SKIPIF1<0叫做相位,x=0時(shí)的相位SKIPIF1<0叫做初相.三、三角函數(shù)的綜合應(yīng)用(1)函數(shù)SKIPIF1<0,SKIPIF1<0的定義域均為SKIPIF1<0;函數(shù)SKIPIF1<0的定義域均為SKIPIF1<0.(2)函數(shù)SKIPIF1<0,SKIPIF1<0的最大值為SKIPIF1<0,最小值為SKIPIF1<0;函數(shù)SKIPIF1<0的值域?yàn)镾KIPIF1<0.(3)函數(shù)SKIPIF1<0,SKIPIF1<0的最小正周期為SKIPIF1<0;函數(shù)SKIPIF1<0的最小正周期為SKIPIF1<0.(4)對(duì)于SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)為奇函數(shù),當(dāng)且僅當(dāng)SKIPIF1<0時(shí)為偶函數(shù);對(duì)于SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)為奇函數(shù),當(dāng)且僅當(dāng)SKIPIF1<0時(shí)為偶函數(shù);對(duì)于SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)為奇函數(shù).(5)函數(shù)SKIPIF1<0的單調(diào)遞增區(qū)間由不等式SKIPIF1<0SKIPIF1<0來(lái)確定,單調(diào)遞減區(qū)間由不等式SKIPIF1<0來(lái)確定;函數(shù)SKIPIF1<0的單調(diào)遞增區(qū)間由不等式SKIPIF1<0來(lái)確定,單調(diào)遞減區(qū)間由不等式SKIPIF1<0來(lái)確定;函數(shù)SKIPIF1<0的單調(diào)遞增區(qū)間由不等式SKIPIF1<0來(lái)確定.【注】函數(shù)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0(SKIPIF1<0有可能為負(fù)數(shù))的單調(diào)區(qū)間:先利用誘導(dǎo)公式把SKIPIF1<0化為正數(shù)后再求解.(6)函數(shù)SKIPIF1<0圖象的對(duì)稱(chēng)軸為SKIPIF1<0,對(duì)稱(chēng)中心為SKIPIF1<0;函數(shù)SKIPIF1<0圖象的對(duì)稱(chēng)軸為SKIPIF1<0,對(duì)稱(chēng)中心為SKIPIF1<0;函數(shù)SKIPIF1<0圖象的對(duì)稱(chēng)中心為SKIPIF1<0.【注】函數(shù)SKIPIF1<0,SKIPIF1<0的圖象與SKIPIF1<0軸的交點(diǎn)都為對(duì)稱(chēng)中心,過(guò)最高點(diǎn)或最低點(diǎn)且垂直于SKIPIF1<0軸的直線(xiàn)都為對(duì)稱(chēng)軸.函數(shù)SKIPIF1<0的圖象與SKIPIF1<0軸的交點(diǎn)和漸近線(xiàn)與SKIPIF1<0軸的交點(diǎn)都為對(duì)稱(chēng)中心,無(wú)對(duì)稱(chēng)軸.【考點(diǎn)研習(xí)一點(diǎn)通】1、定義域和值域(1)SKIPIF1<0(2)SKIPIF1<0(3)SKIPIF1<0(4)SKIPIF1<0SKIPIF1<0【點(diǎn)撥】(1)(4)利用兩角和公式對(duì)函數(shù)解析式化簡(jiǎn)整理,進(jìn)而根據(jù)正弦函數(shù)的性質(zhì)求出函數(shù)的最大值及最小值,注意自變量的取值范圍.(2)根據(jù)角的范圍得出sinx的范圍,運(yùn)用換元配方后求出y的最大值及最小值,進(jìn)而得出函數(shù)的值域.(3)解析式利用二倍角的正弦公式化簡(jiǎn)后求值域;【解析】(1)∵SKIPIF1<0,∴SKIPIF1<0,當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),SKIPIF1<0,∴SKIPIF1<0.(2)SKIPIF1<0,令:SKIPIF1<0,則SKIPIF1<0∵SKIPIF1<0為增函數(shù);∴SKIPIF1<0.(3)根據(jù)SKIPIF1<0可知SKIPIF1<0,故函數(shù)的值域?yàn)镾KIPIF1<0.(4)SKIPIF1<0,由SKIPIF1<0知SKIPIF1<0,由正弦函數(shù)的單調(diào)性可知SKIPIF1<0,故函數(shù)的值域?yàn)镾KIPIF1<0.【總結(jié)】①形如SKIPIF1<0或SKIPIF1<0,可根據(jù)SKIPIF1<0的有界性來(lái)求最值;②形如SKIPIF1<0或SKIPIF1<0可看成關(guān)于SKIPIF1<0的二次函數(shù),但也要注意它與二次函數(shù)求最值的區(qū)別,其中SKIPIF1<0;③形如SKIPIF1<0可化為SKIPIF1<0(其中SKIPIF1<0)的形式來(lái)確定最值.【變式1-2】已知函數(shù)SKIPIF1<0的定義域是SKIPIF1<0,值域是SKIPIF1<0,求常數(shù)SKIPIF1<0.【解析】SKIPIF1<0SKIPIF1<0SKIPIF1<0∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,若SKIPIF1<0,則當(dāng)SKIPIF1<0時(shí)函數(shù)取得最大值SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)函數(shù)取得最小值SKIPIF1<0,∴SKIPIF1<0,解得:SKIPIF1<0,若SKIPIF1<0時(shí),則當(dāng)SKIPIF1<0時(shí)函數(shù)取得最大值SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)函數(shù)取得最小值SKIPIF1<0,∴SKIPIF1<0,解得:SKIPIF1<0,所以,SKIPIF1<0或SKIPIF1<0.考點(diǎn)02奇偶性、周期性、單調(diào)性2、已知函數(shù)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的大小關(guān)系為.【答案】SKIPIF1<0【解析】因?yàn)镾KIPIF1<0是偶函數(shù),所以SKIPIF1<0,又SKIPIF1<0時(shí),SKIPIF1<0所以函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增.SKIPIF1<0.所以SKIPIF1<0【變式2-1】已知函數(shù)SKIPIF1<0若SKIPIF1<0是偶函數(shù),則SKIPIF1<0.【答案】SKIPIF1<0【解析】SKIPIF1<0SKIPIF1<0SKIPIF1<0是偶函數(shù)SKIPIF1<0解得:SKIPIF1<0SKIPIF1<0SKIPIF1<03、求函數(shù)SKIPIF1<0的單調(diào)區(qū)間?!军c(diǎn)撥】運(yùn)用換元法,注意定義域,轉(zhuǎn)化為求熟悉的二次函數(shù)單調(diào)區(qū)間的問(wèn)題.【解析】令SKIPIF1<0,則SKIPIF1<0,且SKIPIF1<0顯然函數(shù)SKIPIF1<0在SKIPIF1<0始終是單調(diào)遞減的,所以SKIPIF1<0時(shí),SKIPIF1<0單調(diào)遞增,SKIPIF1<0單調(diào)遞減;SKIPIF1<0時(shí),SKIPIF1<0單調(diào)遞減,SKIPIF1<0單調(diào)遞增;故SKIPIF1<0單調(diào)遞減區(qū)間為SKIPIF1<0;單調(diào)遞增區(qū)間為SKIPIF1<0.【變式3-1】求函數(shù)SKIPIF1<0的單調(diào)區(qū)間.【解析】令SKIPIF1<0,則SKIPIF1<0,函數(shù)SKIPIF1<0的周期為SKIPIF1<0,且圖象如圖所示:顯然,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0單調(diào)遞增;∴當(dāng)SKIPIF1<0時(shí),SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0單調(diào)遞增;故SKIPIF1<0的單調(diào)遞減區(qū)間為SKIPIF1<0;單調(diào)遞增區(qū)間為SKIPIF1<0.4、已知函數(shù)f(x)=4tanxsin(SKIPIF1<0)cos(SKIPIF1<0)-SKIPIF1<0.(Ⅰ)求f(x)的定義域與最小正周期;(Ⅱ)討論f(x)在區(qū)間[SKIPIF1<0]上的單調(diào)性.【點(diǎn)撥】通過(guò)誘導(dǎo)公式、兩角差的余弦函數(shù)、二倍角公式,化簡(jiǎn)函數(shù)的表達(dá)式,(1)直接求出函數(shù)的定義域和最小正周期.(2)根據(jù)(Ⅰ)的結(jié)論,研究三角函數(shù)在區(qū)間[SKIPIF1<0]上的單調(diào)性.【解析】(Ⅰ)f(x)的定義域?yàn)镾KIPIF1<0SKIPIF1<0所以f(x)的最小正周期SKIPIF1<0(Ⅱ)令SKIPIF1<0函數(shù)SKIPIF1<0的單調(diào)遞增區(qū)間SKIPIF1<0由SKIPIF1<0,得SKIPIF1<0設(shè)SKIPIF1<0,易知SKIPIF1<0.所以,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,在區(qū)間SKIPIF1<0上單調(diào)遞減.【總結(jié)】對(duì)于較為復(fù)雜的三角函數(shù),可通過(guò)恒等變形轉(zhuǎn)化為SKIPIF1<0或SKIPIF1<0的形式進(jìn)行.注意三角函數(shù)的單調(diào)性的求解.【變式4-1】已知函數(shù)SKIPIF1<0,(1)求SKIPIF1<0的定義域及最小正周期;(2)求SKIPIF1<0的單調(diào)遞增區(qū)間.【解析】(1)由題知SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0的定義域?yàn)镾KIPIF1<0,SKIPIF1<0SKIPIF1<0.(2)由SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0單調(diào)遞增,故SKIPIF1<0的單調(diào)遞增區(qū)間區(qū)間為SKIPIF1<0.【變式4-2】設(shè)函數(shù)f(x)=Asin(ωx+φ)(其中A>0,ω>0,-π<φ≤π)在x=SKIPIF1<0處取得最大值2,其圖象與x軸的相鄰兩個(gè)交點(diǎn)的距離為SKIPIF1<0.(1)求f(x)的解析式;(2)求函數(shù)g(x)=SKIPIF1<0的值域.【解析】(1)由題設(shè)條件知f(x)的周期T=π,即SKIPIF1<0,解得ω=2.因f(x)在SKIPIF1<0處取得最大值2,所以A=2,從而SKIPIF1<0,所以SKIPIF1<0.又由-π<φ≤π得SKIPIF1<0.故f(x)的解析式為f(x)SKIPIF1<0.(2)g(x)=SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0因cos2x∈[0,1],且cos2x≠SKIPIF1<0,故g(x)的值域?yàn)镾KIPIF1<0.【考點(diǎn)易錯(cuò)】1、已知函數(shù)SKIPIF1<0.(Ⅰ)若SKIPIF1<0,求SKIPIF1<0的值;(II)設(shè)SKIPIF1<0,求函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上的最大值和最小值.【點(diǎn)撥】(1)注意到所求角和已知角的關(guān)系,用二倍角公式來(lái)處理;(2)先求出SKIPIF1<0的解析式,再運(yùn)用求最值的方法解決.【解析】(Ⅰ)∵SKIPIF1<0,∴SKIPIF1<0(II)SKIPIF1<0SKIPIF1<0∵SKIPIF1<0,∴SKIPIF1<0∴當(dāng)SKIPIF1<0即SKIPIF1<0時(shí),SKIPIF1<0當(dāng)SKIPIF1<0即SKIPIF1<0時(shí),SKIPIF1<0【總結(jié)】先通過(guò)倍角公式和兩角的和、差公式進(jìn)行化簡(jiǎn),利用余弦函數(shù)的單調(diào)性可知函數(shù)的最值.【變式1-1】已知函數(shù)SKIPIF1<0(SKIPIF1<0)的最大值為SKIPIF1<0,最小值為SKIPIF1<0,求函數(shù)SKIPIF1<0的最大值和最小值.【解析】SKIPIF1<0(SKIPIF1<0)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,①當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,②由①②得SKIPIF1<0,∴SKIPIF1<0,所以,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.【變式1-2】已知函數(shù)SKIPIF1<0的定義域是SKIPIF1<0,值域是SKIPIF1<0,求常數(shù)SKIPIF1<0.【解析】SKIPIF1<0SKIPIF1<0SKIPIF1<0∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,若SKIPIF1<0,則當(dāng)SKIPIF1<0時(shí)函數(shù)取得最大值SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)函數(shù)取得最小值SKIPIF1<0,∴SKIPIF1<0,解得:SKIPIF1<0,若SKIPIF1<0時(shí),則當(dāng)SKIPIF1<0時(shí)函數(shù)取得最大值SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)函數(shù)取得最小值SKIPIF1<0,∴SKIPIF1<0,解得:SKIPIF1<0,所以,SKIPIF1<0或SKIPIF1<0.2、已知函數(shù)f(x)=Asin(ωx+φ)A>0,ω>0,(1)求函數(shù)f(x)的解析式.(2)求函數(shù)f(x)在區(qū)間0,5π12【解析】(1)由圖象可知A=2,又A>0,故A=2周期SKIPIF1<0,又T=2πω=∴f∵φ<則函數(shù)f(x)的解析式為f(x)=2sin(2)∵SKIPIF1<0,∴sin(2x?當(dāng)2x?π6=π2當(dāng)2x?π6=?π6所以f(x)max=f(3、已知函數(shù)SKIPIF1<0.(1)求SKIPIF1<0的最小正周期;(2)若SKIPIF1<0在區(qū)間SKIPIF1<0上的最大值與最小值的和為2,求SKIPIF1<0的值.【解析】(1)SKIPIF1<0SKIPIF1<0SKIPIF1<0,則SKIPIF1<0.(2)因?yàn)镾KIPIF1<0,所以SKIPIF1<0.當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),SKIPIF1<0單調(diào)遞增;當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),SKIPIF1<0單調(diào)遞減,所以SKIPIF1<0.又因?yàn)镾KIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0,因此SKIPIF1<0.【鞏固提升】1、函數(shù)SKIPIF1<0的最小正周期為A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】因?yàn)镾KIPIF1<0,所以最小正周期為SKIPIF1<0.故選D.2.已知函數(shù)SKIPIF1<0(SKIPIF1<0,SKIPIF1<0),若函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)沒(méi)有零點(diǎn),則SKIPIF1<0的取值范圍是A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,因?yàn)楹瘮?shù)SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)沒(méi)有零點(diǎn),所以SKIPIF1<0且SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0可得SKIPIF1<0,令SKIPIF1<0可得SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0的取值范圍是SKIPIF1<0.故選C.3.設(shè)函數(shù)SKIPIF1<0,SKIPIF1<0則下列判斷正確的是A.函數(shù)的一條對(duì)稱(chēng)軸為SKIPIF1<0B.函數(shù)在區(qū)間SKIPIF1<0內(nèi)單調(diào)遞增C.SKIPIF1<0,使SKIPIF1<0D.SKIPIF1<0,使得函數(shù)SKIPIF1<0在其定義域內(nèi)為偶函數(shù)【答案】D【解析】函數(shù)SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0不能使函數(shù)取得最值,所以不是函數(shù)的對(duì)稱(chēng)軸,A錯(cuò);當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,函數(shù)先增后減,B不正確;若SKIPIF1<0,那么SKIPIF1<0不成立,所以C錯(cuò);當(dāng)SKIPIF1<0時(shí),SKIPIF1<0函數(shù)是偶函數(shù),D正確,故選:D.4、若SKIPIF1<0在SKIPIF1<0是減函數(shù),則SKIPIF1<0的最大值是A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】因?yàn)镾KIPIF1<0,所以由SKIPIF1<0得SKIPIF1<0,因此SKIPIF1<0,從而SKIPIF1<0的最大值為SKIPIF1<0,故選A.5、函數(shù)f(x)=sin22x的最小正周期是__________.【答案】SKIPIF1<0【解析】函數(shù)SKIPIF1<0SKIPIF1<0,周期為SKIPIF1<0.6、函數(shù)f(x)=sin22x的最小正周期是__________.【答案】SKIPIF1<0【解析】函數(shù)SKIPIF1<0SKIPIF1<0,周期為SKIPIF1<0.7、關(guān)于函數(shù)f(x)=SKIPIF1<0有如下四個(gè)命題:①f(x)的圖象關(guān)于y軸對(duì)稱(chēng).②f(x)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng).③f(x)的圖象關(guān)于直線(xiàn)x=SKIPIF1<0對(duì)稱(chēng).④f(x)的最小值為2.其中所有真命題的序號(hào)是__________.【答案】②③【解析】對(duì)于命題①,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,所以,函數(shù)SKIPIF1<0的圖象不關(guān)于SKIPIF1<0軸對(duì)稱(chēng),命題①錯(cuò)誤;對(duì)于命題②,函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,定義域關(guān)于原點(diǎn)對(duì)稱(chēng),SKIPIF1<0,所以,函數(shù)SKIPIF1<0的圖象關(guān)于原點(diǎn)對(duì)稱(chēng),命題②正確;對(duì)于命題③,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,所以,函數(shù)SKIPIF1<0的圖象關(guān)于直線(xiàn)SKIPIF1<0對(duì)稱(chēng),命題③正確;對(duì)于命題④,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0,命題④錯(cuò)誤.故答案為:②③.8.已知函數(shù)SKIPIF1<0

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論