新高考數學一輪復習考點精講練+易錯題型第25講 三角函數的圖像與性質(解析版)_第1頁
新高考數學一輪復習考點精講練+易錯題型第25講 三角函數的圖像與性質(解析版)_第2頁
新高考數學一輪復習考點精講練+易錯題型第25講 三角函數的圖像與性質(解析版)_第3頁
新高考數學一輪復習考點精講練+易錯題型第25講 三角函數的圖像與性質(解析版)_第4頁
新高考數學一輪復習考點精講練+易錯題型第25講 三角函數的圖像與性質(解析版)_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

第25講三角函數的圖像與性質【基礎知識網絡圖】應用應用三角函數的圖象與性質正弦函數的圖象與性質余弦函數的圖象與性質正切函數的圖象與性質【基礎知識全通關】一、正弦函數SKIPIF1<0,余弦函數SKIPIF1<0,正切函數SKIPIF1<0的圖象與性質函數SKIPIF1<0SKIPIF1<0SKIPIF1<0圖象定義域SKIPIF1<0SKIPIF1<0SKIPIF1<0值域SKIPIF1<0SKIPIF1<0SKIPIF1<0最值當SKIPIF1<0時,SKIPIF1<0;當SKIPIF1<0時,SKIPIF1<0.當SKIPIF1<0時,SKIPIF1<0;當SKIPIF1<0時,SKIPIF1<0.既無最大值,也無最小值周期性最小正周期為SKIPIF1<0最小正周期為SKIPIF1<0最小正周期為SKIPIF1<0奇偶性SKIPIF1<0,奇函數SKIPIF1<0,偶函數SKIPIF1<0,奇函數單調性在SKIPIF1<0上是增函數;在SKIPIF1<0上是減函數.在SKIPIF1<0上是增函數;在SKIPIF1<0上是減函數.在SKIPIF1<0上是增函數.對稱性對稱中心SKIPIF1<0;對稱軸SKIPIF1<0,既是中心對稱圖形又是軸對稱圖形.對稱中心SKIPIF1<0;對稱軸SKIPIF1<0,既是中心對稱圖形又是軸對稱圖形.對稱中心SKIPIF1<0;無對稱軸,是中心對稱圖形但不是軸對稱圖形.二、函數SKIPIF1<0的圖象與性質1.函數SKIPIF1<0的圖象的畫法(1)變換作圖法由函數SKIPIF1<0的圖象通過變換得到SKIPIF1<0(A>0,ω>0)的圖象,有兩種主要途徑:“先平移后伸縮”與“先伸縮后平移”.如下圖.(2)五點作圖法找五個關鍵點,分別為使y取得最小值、最大值的點和曲線與x軸的交點.其步驟為:①先確定最小正周期T=SKIPIF1<0,在一個周期內作出圖象;②令SKIPIF1<0,令X分別取0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,求出對應的x值,列表如下:由此可得五個關鍵點;③描點畫圖,再利用函數的周期性把所得簡圖向左右分別擴展,從而得到SKIPIF1<0的簡圖.2.函數SKIPIF1<0(A>0,ω>0)的性質(1)奇偶性:SKIPIF1<0時,函數SKIPIF1<0為奇函數;SKIPIF1<0時,函數SKIPIF1<0為偶函數.(2)周期性:SKIPIF1<0存在周期性,其最小正周期為T=SKIPIF1<0.(3)單調性:根據y=sint和t=SKIPIF1<0的單調性來研究,由SKIPIF1<0得單調增區(qū)間;由SKIPIF1<0得單調減區(qū)間.(4)對稱性:利用y=sinx的對稱中心為SKIPIF1<0求解,令SKIPIF1<0,求得x.利用y=sinx的對稱軸為SKIPIF1<0求解,令SKIPIF1<0,得其對稱軸.3.函數SKIPIF1<0(A>0,ω>0)的物理意義當函數SKIPIF1<0(A>0,ω>0,SKIPIF1<0)表示一個簡諧振動量時,則A叫做振幅,T=SKIPIF1<0叫做周期,f=SKIPIF1<0叫做頻率,SKIPIF1<0叫做相位,x=0時的相位SKIPIF1<0叫做初相.三、三角函數的綜合應用(1)函數SKIPIF1<0,SKIPIF1<0的定義域均為SKIPIF1<0;函數SKIPIF1<0的定義域均為SKIPIF1<0.(2)函數SKIPIF1<0,SKIPIF1<0的最大值為SKIPIF1<0,最小值為SKIPIF1<0;函數SKIPIF1<0的值域為SKIPIF1<0.(3)函數SKIPIF1<0,SKIPIF1<0的最小正周期為SKIPIF1<0;函數SKIPIF1<0的最小正周期為SKIPIF1<0.(4)對于SKIPIF1<0,當且僅當SKIPIF1<0時為奇函數,當且僅當SKIPIF1<0時為偶函數;對于SKIPIF1<0,當且僅當SKIPIF1<0時為奇函數,當且僅當SKIPIF1<0時為偶函數;對于SKIPIF1<0,當且僅當SKIPIF1<0時為奇函數.(5)函數SKIPIF1<0的單調遞增區(qū)間由不等式SKIPIF1<0SKIPIF1<0來確定,單調遞減區(qū)間由不等式SKIPIF1<0來確定;函數SKIPIF1<0的單調遞增區(qū)間由不等式SKIPIF1<0來確定,單調遞減區(qū)間由不等式SKIPIF1<0來確定;函數SKIPIF1<0的單調遞增區(qū)間由不等式SKIPIF1<0來確定.【注】函數SKIPIF1<0,SKIPIF1<0,SKIPIF1<0(SKIPIF1<0有可能為負數)的單調區(qū)間:先利用誘導公式把SKIPIF1<0化為正數后再求解.(6)函數SKIPIF1<0圖象的對稱軸為SKIPIF1<0,對稱中心為SKIPIF1<0;函數SKIPIF1<0圖象的對稱軸為SKIPIF1<0,對稱中心為SKIPIF1<0;函數SKIPIF1<0圖象的對稱中心為SKIPIF1<0.【注】函數SKIPIF1<0,SKIPIF1<0的圖象與SKIPIF1<0軸的交點都為對稱中心,過最高點或最低點且垂直于SKIPIF1<0軸的直線都為對稱軸.函數SKIPIF1<0的圖象與SKIPIF1<0軸的交點和漸近線與SKIPIF1<0軸的交點都為對稱中心,無對稱軸.【考點研習一點通】1、定義域和值域(1)SKIPIF1<0(2)SKIPIF1<0(3)SKIPIF1<0(4)SKIPIF1<0SKIPIF1<0【點撥】(1)(4)利用兩角和公式對函數解析式化簡整理,進而根據正弦函數的性質求出函數的最大值及最小值,注意自變量的取值范圍.(2)根據角的范圍得出sinx的范圍,運用換元配方后求出y的最大值及最小值,進而得出函數的值域.(3)解析式利用二倍角的正弦公式化簡后求值域;【解析】(1)∵SKIPIF1<0,∴SKIPIF1<0,當SKIPIF1<0,即SKIPIF1<0時,SKIPIF1<0;當SKIPIF1<0,即SKIPIF1<0時,SKIPIF1<0,∴SKIPIF1<0.(2)SKIPIF1<0,令:SKIPIF1<0,則SKIPIF1<0∵SKIPIF1<0為增函數;∴SKIPIF1<0.(3)根據SKIPIF1<0可知SKIPIF1<0,故函數的值域為SKIPIF1<0.(4)SKIPIF1<0,由SKIPIF1<0知SKIPIF1<0,由正弦函數的單調性可知SKIPIF1<0,故函數的值域為SKIPIF1<0.【總結】①形如SKIPIF1<0或SKIPIF1<0,可根據SKIPIF1<0的有界性來求最值;②形如SKIPIF1<0或SKIPIF1<0可看成關于SKIPIF1<0的二次函數,但也要注意它與二次函數求最值的區(qū)別,其中SKIPIF1<0;③形如SKIPIF1<0可化為SKIPIF1<0(其中SKIPIF1<0)的形式來確定最值.【變式1-2】已知函數SKIPIF1<0的定義域是SKIPIF1<0,值域是SKIPIF1<0,求常數SKIPIF1<0.【解析】SKIPIF1<0SKIPIF1<0SKIPIF1<0∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,若SKIPIF1<0,則當SKIPIF1<0時函數取得最大值SKIPIF1<0,當SKIPIF1<0時函數取得最小值SKIPIF1<0,∴SKIPIF1<0,解得:SKIPIF1<0,若SKIPIF1<0時,則當SKIPIF1<0時函數取得最大值SKIPIF1<0,當SKIPIF1<0時函數取得最小值SKIPIF1<0,∴SKIPIF1<0,解得:SKIPIF1<0,所以,SKIPIF1<0或SKIPIF1<0.考點02奇偶性、周期性、單調性2、已知函數SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的大小關系為.【答案】SKIPIF1<0【解析】因為SKIPIF1<0是偶函數,所以SKIPIF1<0,又SKIPIF1<0時,SKIPIF1<0所以函數SKIPIF1<0在SKIPIF1<0上單調遞增.SKIPIF1<0.所以SKIPIF1<0【變式2-1】已知函數SKIPIF1<0若SKIPIF1<0是偶函數,則SKIPIF1<0.【答案】SKIPIF1<0【解析】SKIPIF1<0SKIPIF1<0SKIPIF1<0是偶函數SKIPIF1<0解得:SKIPIF1<0SKIPIF1<0SKIPIF1<03、求函數SKIPIF1<0的單調區(qū)間?!军c撥】運用換元法,注意定義域,轉化為求熟悉的二次函數單調區(qū)間的問題.【解析】令SKIPIF1<0,則SKIPIF1<0,且SKIPIF1<0顯然函數SKIPIF1<0在SKIPIF1<0始終是單調遞減的,所以SKIPIF1<0時,SKIPIF1<0單調遞增,SKIPIF1<0單調遞減;SKIPIF1<0時,SKIPIF1<0單調遞減,SKIPIF1<0單調遞增;故SKIPIF1<0單調遞減區(qū)間為SKIPIF1<0;單調遞增區(qū)間為SKIPIF1<0.【變式3-1】求函數SKIPIF1<0的單調區(qū)間.【解析】令SKIPIF1<0,則SKIPIF1<0,函數SKIPIF1<0的周期為SKIPIF1<0,且圖象如圖所示:顯然,當SKIPIF1<0時,SKIPIF1<0單調遞減;當SKIPIF1<0時,SKIPIF1<0單調遞增;∴當SKIPIF1<0時,SKIPIF1<0單調遞減;當SKIPIF1<0時,SKIPIF1<0單調遞增;故SKIPIF1<0的單調遞減區(qū)間為SKIPIF1<0;單調遞增區(qū)間為SKIPIF1<0.4、已知函數f(x)=4tanxsin(SKIPIF1<0)cos(SKIPIF1<0)-SKIPIF1<0.(Ⅰ)求f(x)的定義域與最小正周期;(Ⅱ)討論f(x)在區(qū)間[SKIPIF1<0]上的單調性.【點撥】通過誘導公式、兩角差的余弦函數、二倍角公式,化簡函數的表達式,(1)直接求出函數的定義域和最小正周期.(2)根據(Ⅰ)的結論,研究三角函數在區(qū)間[SKIPIF1<0]上的單調性.【解析】(Ⅰ)f(x)的定義域為SKIPIF1<0SKIPIF1<0所以f(x)的最小正周期SKIPIF1<0(Ⅱ)令SKIPIF1<0函數SKIPIF1<0的單調遞增區(qū)間SKIPIF1<0由SKIPIF1<0,得SKIPIF1<0設SKIPIF1<0,易知SKIPIF1<0.所以,當SKIPIF1<0時,SKIPIF1<0在區(qū)間SKIPIF1<0上單調遞增,在區(qū)間SKIPIF1<0上單調遞減.【總結】對于較為復雜的三角函數,可通過恒等變形轉化為SKIPIF1<0或SKIPIF1<0的形式進行.注意三角函數的單調性的求解.【變式4-1】已知函數SKIPIF1<0,(1)求SKIPIF1<0的定義域及最小正周期;(2)求SKIPIF1<0的單調遞增區(qū)間.【解析】(1)由題知SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0的定義域為SKIPIF1<0,SKIPIF1<0SKIPIF1<0.(2)由SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0單調遞增,故SKIPIF1<0的單調遞增區(qū)間區(qū)間為SKIPIF1<0.【變式4-2】設函數f(x)=Asin(ωx+φ)(其中A>0,ω>0,-π<φ≤π)在x=SKIPIF1<0處取得最大值2,其圖象與x軸的相鄰兩個交點的距離為SKIPIF1<0.(1)求f(x)的解析式;(2)求函數g(x)=SKIPIF1<0的值域.【解析】(1)由題設條件知f(x)的周期T=π,即SKIPIF1<0,解得ω=2.因f(x)在SKIPIF1<0處取得最大值2,所以A=2,從而SKIPIF1<0,所以SKIPIF1<0.又由-π<φ≤π得SKIPIF1<0.故f(x)的解析式為f(x)SKIPIF1<0.(2)g(x)=SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0因cos2x∈[0,1],且cos2x≠SKIPIF1<0,故g(x)的值域為SKIPIF1<0.【考點易錯】1、已知函數SKIPIF1<0.(Ⅰ)若SKIPIF1<0,求SKIPIF1<0的值;(II)設SKIPIF1<0,求函數SKIPIF1<0在區(qū)間SKIPIF1<0上的最大值和最小值.【點撥】(1)注意到所求角和已知角的關系,用二倍角公式來處理;(2)先求出SKIPIF1<0的解析式,再運用求最值的方法解決.【解析】(Ⅰ)∵SKIPIF1<0,∴SKIPIF1<0(II)SKIPIF1<0SKIPIF1<0∵SKIPIF1<0,∴SKIPIF1<0∴當SKIPIF1<0即SKIPIF1<0時,SKIPIF1<0當SKIPIF1<0即SKIPIF1<0時,SKIPIF1<0【總結】先通過倍角公式和兩角的和、差公式進行化簡,利用余弦函數的單調性可知函數的最值.【變式1-1】已知函數SKIPIF1<0(SKIPIF1<0)的最大值為SKIPIF1<0,最小值為SKIPIF1<0,求函數SKIPIF1<0的最大值和最小值.【解析】SKIPIF1<0(SKIPIF1<0)當SKIPIF1<0時,SKIPIF1<0,①當SKIPIF1<0時,SKIPIF1<0,②由①②得SKIPIF1<0,∴SKIPIF1<0,所以,當SKIPIF1<0時,SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0.【變式1-2】已知函數SKIPIF1<0的定義域是SKIPIF1<0,值域是SKIPIF1<0,求常數SKIPIF1<0.【解析】SKIPIF1<0SKIPIF1<0SKIPIF1<0∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,若SKIPIF1<0,則當SKIPIF1<0時函數取得最大值SKIPIF1<0,當SKIPIF1<0時函數取得最小值SKIPIF1<0,∴SKIPIF1<0,解得:SKIPIF1<0,若SKIPIF1<0時,則當SKIPIF1<0時函數取得最大值SKIPIF1<0,當SKIPIF1<0時函數取得最小值SKIPIF1<0,∴SKIPIF1<0,解得:SKIPIF1<0,所以,SKIPIF1<0或SKIPIF1<0.2、已知函數f(x)=Asin(ωx+φ)A>0,ω>0,(1)求函數f(x)的解析式.(2)求函數f(x)在區(qū)間0,5π12【解析】(1)由圖象可知A=2,又A>0,故A=2周期SKIPIF1<0,又T=2πω=∴f∵φ<則函數f(x)的解析式為f(x)=2sin(2)∵SKIPIF1<0,∴sin(2x?當2x?π6=π2當2x?π6=?π6所以f(x)max=f(3、已知函數SKIPIF1<0.(1)求SKIPIF1<0的最小正周期;(2)若SKIPIF1<0在區(qū)間SKIPIF1<0上的最大值與最小值的和為2,求SKIPIF1<0的值.【解析】(1)SKIPIF1<0SKIPIF1<0SKIPIF1<0,則SKIPIF1<0.(2)因為SKIPIF1<0,所以SKIPIF1<0.當SKIPIF1<0,即SKIPIF1<0時,SKIPIF1<0單調遞增;當SKIPIF1<0,即SKIPIF1<0時,SKIPIF1<0單調遞減,所以SKIPIF1<0.又因為SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0,因此SKIPIF1<0.【鞏固提升】1、函數SKIPIF1<0的最小正周期為A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】因為SKIPIF1<0,所以最小正周期為SKIPIF1<0.故選D.2.已知函數SKIPIF1<0(SKIPIF1<0,SKIPIF1<0),若函數SKIPIF1<0在區(qū)間SKIPIF1<0內沒有零點,則SKIPIF1<0的取值范圍是A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,因為函數SKIPIF1<0在區(qū)間SKIPIF1<0內沒有零點,所以SKIPIF1<0且SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0可得SKIPIF1<0,令SKIPIF1<0可得SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0的取值范圍是SKIPIF1<0.故選C.3.設函數SKIPIF1<0,SKIPIF1<0則下列判斷正確的是A.函數的一條對稱軸為SKIPIF1<0B.函數在區(qū)間SKIPIF1<0內單調遞增C.SKIPIF1<0,使SKIPIF1<0D.SKIPIF1<0,使得函數SKIPIF1<0在其定義域內為偶函數【答案】D【解析】函數SKIPIF1<0,當SKIPIF1<0時,當SKIPIF1<0時,SKIPIF1<0不能使函數取得最值,所以不是函數的對稱軸,A錯;當SKIPIF1<0時,SKIPIF1<0,函數先增后減,B不正確;若SKIPIF1<0,那么SKIPIF1<0不成立,所以C錯;當SKIPIF1<0時,SKIPIF1<0函數是偶函數,D正確,故選:D.4、若SKIPIF1<0在SKIPIF1<0是減函數,則SKIPIF1<0的最大值是A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】因為SKIPIF1<0,所以由SKIPIF1<0得SKIPIF1<0,因此SKIPIF1<0,從而SKIPIF1<0的最大值為SKIPIF1<0,故選A.5、函數f(x)=sin22x的最小正周期是__________.【答案】SKIPIF1<0【解析】函數SKIPIF1<0SKIPIF1<0,周期為SKIPIF1<0.6、函數f(x)=sin22x的最小正周期是__________.【答案】SKIPIF1<0【解析】函數SKIPIF1<0SKIPIF1<0,周期為SKIPIF1<0.7、關于函數f(x)=SKIPIF1<0有如下四個命題:①f(x)的圖象關于y軸對稱.②f(x)的圖象關于原點對稱.③f(x)的圖象關于直線x=SKIPIF1<0對稱.④f(x)的最小值為2.其中所有真命題的序號是__________.【答案】②③【解析】對于命題①,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,所以,函數SKIPIF1<0的圖象不關于SKIPIF1<0軸對稱,命題①錯誤;對于命題②,函數SKIPIF1<0的定義域為SKIPIF1<0,定義域關于原點對稱,SKIPIF1<0,所以,函數SKIPIF1<0的圖象關于原點對稱,命題②正確;對于命題③,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,所以,函數SKIPIF1<0的圖象關于直線SKIPIF1<0對稱,命題③正確;對于命題④,當SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0,命題④錯誤.故答案為:②③.8.已知函數SKIPIF1<0

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論