




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
第15講函數(shù)與方程【基礎(chǔ)知識(shí)網(wǎng)絡(luò)圖】函數(shù)與方程函數(shù)與方程函數(shù)的零點(diǎn)二分法函數(shù)與方程的關(guān)系【基礎(chǔ)知識(shí)全通關(guān)】知識(shí)點(diǎn)01.函數(shù)零點(diǎn)的理解(1)函數(shù)的零點(diǎn)、方程的根、函數(shù)圖象與x軸的交點(diǎn)的橫坐標(biāo),實(shí)質(zhì)是同一個(gè)問(wèn)題的三種不同表達(dá)形式,方程根的個(gè)數(shù)就是函數(shù)零點(diǎn)的個(gè)數(shù),亦即函數(shù)圖象與x軸交點(diǎn)的個(gè)數(shù).(2)變號(hào)零點(diǎn)與不變號(hào)零點(diǎn)①若函數(shù)SKIPIF1<0在零點(diǎn)x0左右兩側(cè)的函數(shù)值異號(hào),則稱(chēng)該零點(diǎn)為函數(shù)SKIPIF1<0的變號(hào)零點(diǎn).②若函數(shù)SKIPIF1<0在零點(diǎn)x0左右兩側(cè)的函數(shù)值同號(hào),則稱(chēng)該零點(diǎn)為函數(shù)SKIPIF1<0的不變號(hào)零點(diǎn).③若函數(shù)SKIPIF1<0在區(qū)間[a,b]上的圖象是一條連續(xù)的曲線,則SKIPIF1<0是SKIPIF1<0在區(qū)間(a,b)內(nèi)有零點(diǎn)的充分不必要條件.如果函數(shù)最值為0,則不能用此方法求零點(diǎn)所在區(qū)間。知識(shí)點(diǎn)02.用二分法求曲線交點(diǎn)的坐標(biāo)應(yīng)注意的問(wèn)題(1)曲線交點(diǎn)坐標(biāo)即為方程組的解,從而轉(zhuǎn)化為求方程的根.(2)求曲線SKIPIF1<0與SKIPIF1<0的交點(diǎn)的橫坐標(biāo),實(shí)際上就是求函數(shù)SKIPIF1<0的零點(diǎn),即求SKIPIF1<0的根.如果函數(shù)的圖象不能畫(huà)出,應(yīng)通過(guò)適當(dāng)?shù)淖冃无D(zhuǎn)換成另外的函數(shù)。知識(shí)點(diǎn)03.關(guān)于用二分法求函數(shù)零點(diǎn)近似值的步驟需注意的問(wèn)題(1)第一步中要使:①區(qū)間長(zhǎng)度盡量小;②SKIPIF1<0、SKIPIF1<0的值比較容易計(jì)算且SKIPIF1<0.(2)根據(jù)函數(shù)的零點(diǎn)與相應(yīng)方程根的關(guān)系,求函數(shù)的零點(diǎn)與求相應(yīng)方程的根是等價(jià)的.對(duì)于求方程SKIPIF1<0的根,可以構(gòu)造函數(shù)SKIPIF1<0),函數(shù)SKIPIF1<0的零點(diǎn)即為方程SKIPIF1<0的根.知識(shí)點(diǎn)04.零點(diǎn)存在性定理如果函數(shù)y=f(x)滿足:①在區(qū)間[a,b]上的圖象是連續(xù)不斷的一條曲線;②f(a)·f(b)<0;則函數(shù)y=f(x)在(a,b)上存在零點(diǎn),即存在c∈(a,b),使得f(c)=0,這個(gè)c也就是方程f(x)=0的根.特別提醒兩個(gè)易錯(cuò)點(diǎn):(1)函數(shù)的零點(diǎn)不是點(diǎn),是方程f(x)=0的實(shí)根.(2)函數(shù)零點(diǎn)的存在性定理只能判斷函數(shù)在某個(gè)區(qū)間上的變號(hào)零點(diǎn),而不能判斷函數(shù)的不變號(hào)零點(diǎn),而且連續(xù)函數(shù)在一個(gè)區(qū)間的端點(diǎn)處函數(shù)值異號(hào)是這個(gè)函數(shù)在這個(gè)區(qū)間上存在零點(diǎn)的充分不必要條件.【考點(diǎn)研習(xí)一點(diǎn)通】考點(diǎn)01:求函數(shù)的零點(diǎn)1、函數(shù),如果方程有四個(gè)不同的實(shí)數(shù)解、、、,則.【答案】4【解析】作出函數(shù)的圖象,方程有四個(gè)不同的實(shí)數(shù)解,等價(jià)為和的圖象有4個(gè)交點(diǎn),不妨設(shè)它們交點(diǎn)的橫坐標(biāo)為、、、,且,由、關(guān)于原點(diǎn)對(duì)稱(chēng),、關(guān)于對(duì)稱(chēng),可得,,則.故答案為:4.【總結(jié)提升】1.正確理解函數(shù)的零點(diǎn):(1)函數(shù)的零點(diǎn)是一個(gè)實(shí)數(shù),當(dāng)自變量取該值時(shí),其函數(shù)值等于零.(2)根據(jù)函數(shù)零點(diǎn)定義可知,函數(shù)f(x)的零點(diǎn)就是f(x)=0的根,因此判斷一個(gè)函數(shù)是否有零點(diǎn),有幾個(gè)零點(diǎn),就是判斷方程f(x)=0是否有實(shí)根,有幾個(gè)實(shí)根.即函數(shù)y=f(x)的零點(diǎn)?方程f(x)=0的實(shí)根?函數(shù)y=f(x)的圖象與x軸交點(diǎn)的橫坐標(biāo).2.函數(shù)零點(diǎn)的求法:(1)代數(shù)法:求方程f(x)=0的實(shí)數(shù)根.(2)幾何法:與函數(shù)y=f(x)的圖象聯(lián)系起來(lái),圖象與x軸的交點(diǎn)的橫坐標(biāo)即為函數(shù)的零點(diǎn).,【變式1-1】已知函數(shù)fx是定義在R上的奇函數(shù),且當(dāng)x≥0時(shí),fx=xA.4+3【答案】C【解析】∵f(x)是定義在R上的奇函數(shù),且當(dāng)x≥0時(shí),f(x)=x(x?4)∴當(dāng)x<0時(shí),?x>0則f(?x)=?x(?x?4)=?f(x)即f(x)=?x(x+4),x<0則f(x)=x(x?4),作出f(x)的圖象如圖:∵y=f(2?x)的圖象與y=f(x)的圖象關(guān)于x=1對(duì)稱(chēng)∴作出y=f(2?x)的圖象,由圖象知y=f(2?x)與y=f(x)的圖象有三個(gè)交點(diǎn)即f(x)=f(2?x)有三個(gè)根,其中一個(gè)根為1,另外兩個(gè)根a,b關(guān)于x=1對(duì)稱(chēng)即a+b=2則所有解的和為a+b+1=2+1=3故選:C.【點(diǎn)撥】根據(jù)函數(shù)奇偶性,求出函數(shù)f(x)的解析式,結(jié)合y=f(2?x)的圖象與y=f(x)的圖象關(guān)于x=1對(duì)稱(chēng),畫(huà)出函數(shù)圖象,結(jié)合函數(shù)的對(duì)稱(chēng)性,求得方程fx考點(diǎn)02:判斷函數(shù)零點(diǎn)所在區(qū)間2、函數(shù)SKIPIF1<0的零點(diǎn)一定位于區(qū)間()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】根據(jù)零點(diǎn)存在性定理,若在區(qū)間SKIPIF1<0有零點(diǎn),則SKIPIF1<0,逐一檢驗(yàn)選項(xiàng),即可得答案.【詳解】由題意得SKIPIF1<0為連續(xù)函數(shù),且在SKIPIF1<0單調(diào)遞增,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,根據(jù)零點(diǎn)存在性定理,SKIPIF1<0,所以零點(diǎn)一定位于區(qū)間SKIPIF1<0.故選:C【規(guī)律方法】判斷函數(shù)零點(diǎn)所在區(qū)間有三種方法:①解方程,直接求出零點(diǎn);②利用零點(diǎn)存在定理,判斷零點(diǎn)所在區(qū)間;③圖象法,觀察交點(diǎn)所在區(qū)間.特別提醒:在判斷一個(gè)函數(shù)在某個(gè)區(qū)間上不存在零點(diǎn)時(shí),不能完全依賴函數(shù)的零點(diǎn)存在性定理,要綜合函數(shù)性質(zhì)進(jìn)行分析判斷.【特別提醒】二分法只能求出連續(xù)函數(shù)變號(hào)零點(diǎn),另外應(yīng)注意初始區(qū)間的選擇,依據(jù)給出的精確度,計(jì)算時(shí)及時(shí)檢驗(yàn).【變式2-1】函數(shù)SKIPIF1<0的零點(diǎn)所在的區(qū)間為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】根據(jù)零點(diǎn)存在性定理,由SKIPIF1<0為增函數(shù),帶入相關(guān)數(shù)值判斷即可得解.【詳解】由SKIPIF1<0為增函數(shù),SKIPIF1<0為增函數(shù),故SKIPIF1<0為增函數(shù),由SKIPIF1<0,SKIPIF1<0,根據(jù)零點(diǎn)存在性定理可得SKIPIF1<0使得SKIPIF1<0,故選:B.考點(diǎn)03:判斷函數(shù)零點(diǎn)的個(gè)數(shù)3、已知圖象連續(xù)不斷的函數(shù)的定義域?yàn)镽,是周期為2的奇函數(shù),在區(qū)間上恰有5個(gè)零點(diǎn),則在區(qū)間SKIPIF1<0上的零點(diǎn)個(gè)數(shù)為()A.5050 B.4045 C.4041 D.2022【答案】B【解析】由函數(shù)的定義域?yàn)镽上的奇函數(shù),可得,又由在區(qū)間上恰有5個(gè)零點(diǎn),可得函數(shù)在區(qū)間和內(nèi)各有2個(gè)零點(diǎn),因?yàn)槭侵芷跒?,所以區(qū)間內(nèi)有兩個(gè)零點(diǎn),且,即函數(shù)在區(qū)間內(nèi)有4個(gè)零點(diǎn),所以在區(qū)間SKIPIF1<0上的零點(diǎn)個(gè)數(shù)為SKIPIF1<0個(gè)零點(diǎn).故選:B.【規(guī)律方法】判斷函數(shù)零點(diǎn)個(gè)數(shù)的方法:1.直接法:即直接求零點(diǎn),令f(x)=0,如果能求出解,則有幾個(gè)不同的解就有幾個(gè)零點(diǎn);2.定理法:利用零點(diǎn)存在性定理,不僅要求函數(shù)的圖象在區(qū)間[a,b]上是連續(xù)不斷的曲線,且f(a)·f(b)<0,還必須結(jié)合函數(shù)的圖象與性質(zhì)(如單調(diào)性、奇偶性)才能確定函數(shù)有多少個(gè)零點(diǎn)3.圖象法:即利用圖象交點(diǎn)的個(gè)數(shù),畫(huà)出函數(shù)f(x)的圖象,函數(shù)f(x)的圖象與x軸交點(diǎn)的個(gè)數(shù)就是函數(shù)f(x)的零點(diǎn)個(gè)數(shù);將函數(shù)f(x)拆成兩個(gè)函數(shù)h(x)和g(x)的差,根據(jù)f(x)=0?h(x)=g(x),則函數(shù)f(x)的零點(diǎn)個(gè)數(shù)就是函數(shù)y=h(x)和y=g(x)的圖象的交點(diǎn)個(gè)數(shù).4.性質(zhì)法:即利用函數(shù)性質(zhì),若能確定函數(shù)的單調(diào)性,則其零點(diǎn)個(gè)數(shù)不難得到;若所考查的函數(shù)是周期函數(shù),則只需解決在一個(gè)周期內(nèi)的零點(diǎn)的個(gè)數(shù).【變式3-1】設(shè)表示不超過(guò)實(shí)數(shù)的最大整數(shù)(如,),則函數(shù)的零點(diǎn)個(gè)數(shù)為_(kāi)______.【答案】2【解析】函數(shù)的零點(diǎn)即方程的根,函數(shù)的零點(diǎn)個(gè)數(shù),即方程的根的個(gè)數(shù)..當(dāng)時(shí),.當(dāng)時(shí),或或(舍).當(dāng)時(shí),,方程無(wú)解.綜上,方程的根為,1.所以方程有2個(gè)根,即函數(shù)有2個(gè)零點(diǎn).故答案為:2.考點(diǎn)04:函數(shù)零點(diǎn)的應(yīng)用4、已知函數(shù),若恰好有2個(gè)零點(diǎn),則的取值范圍是()A. B.C. D.【答案】C【解析】令,因?yàn)榉匠痰膬筛鶠?,所以在同一直角坐?biāo)系下作出函數(shù)的圖象如圖所示:由圖可知,當(dāng)時(shí),函數(shù)恰有兩個(gè)零點(diǎn),圖象如圖所示:當(dāng)時(shí),函數(shù)恰有兩個(gè)零點(diǎn),圖象如圖所示:綜上可知,所求實(shí)數(shù)的取值范圍為.故選:C5、已知函數(shù)SKIPIF1<0若方程SKIPIF1<0的實(shí)根之和為6,則SKIPIF1<0的取值范圍為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】作出SKIPIF1<0圖象,求方程SKIPIF1<0的實(shí)根之和為6,即求SKIPIF1<0與SKIPIF1<0圖象交點(diǎn)橫坐標(biāo)之和為6,分別討論a=1、SKIPIF1<0、a=2、SKIPIF1<0、SKIPIF1<0和a=4時(shí)SKIPIF1<0圖象與SKIPIF1<0圖象交點(diǎn)個(gè)數(shù)及性質(zhì),數(shù)形結(jié)合,即可得答案.【詳解】作出SKIPIF1<0圖象,如圖所示求方程SKIPIF1<0的實(shí)根之和為6,即求SKIPIF1<0與SKIPIF1<0圖象交點(diǎn)橫坐標(biāo)之和為6,當(dāng)a=1時(shí),SKIPIF1<0圖象與SKIPIF1<0圖象只有一個(gè)交點(diǎn)(3,1),不滿足題意;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0圖象與SKIPIF1<0圖象有2個(gè)交點(diǎn),且從左至右設(shè)為SKIPIF1<0,由圖象可得SKIPIF1<0關(guān)于x=3對(duì)稱(chēng),所以SKIPIF1<0,即SKIPIF1<0,滿足題意;當(dāng)a=2時(shí),SKIPIF1<0圖象與SKIPIF1<0圖象有3個(gè)交點(diǎn),且(0,2)為最左側(cè)交點(diǎn),設(shè)SKIPIF1<0與SKIPIF1<0圖象另外兩個(gè)交點(diǎn)為SKIPIF1<0,由圖象可得SKIPIF1<0關(guān)于x=3對(duì)稱(chēng),所以SKIPIF1<0,即SKIPIF1<0,滿足題意;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0圖象與SKIPIF1<0圖象有4個(gè)交點(diǎn),從左至右設(shè)為SKIPIF1<0,SKIPIF1<0,由圖象可得SKIPIF1<0關(guān)于x=0對(duì)稱(chēng),所以SKIPIF1<0,SKIPIF1<0關(guān)于x=3對(duì)稱(chēng),所以SKIPIF1<0,即SKIPIF1<0,滿足題意;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0圖象與SKIPIF1<0圖象有3個(gè)交點(diǎn),由圖象可得不滿足題意;當(dāng)a=4時(shí),SKIPIF1<0圖象與SKIPIF1<0圖象有2個(gè)交點(diǎn),由圖象可得不滿足題意;綜上:SKIPIF1<0的取值范圍為SKIPIF1<0.故選:A6、已知SKIPIF1<0,若函數(shù)SKIPIF1<0有兩個(gè)零點(diǎn)SKIPIF1<0,SKIPIF1<0有兩個(gè)零點(diǎn)SKIPIF1<0,則下列選項(xiàng)正確的有()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】AB【解析】由已知分析得選項(xiàng)A正確,利用基本不等式證明選項(xiàng)B正確;利用不等式性質(zhì)得到選項(xiàng)C錯(cuò)誤,利用作差法得到選出D錯(cuò)誤.【詳解】因?yàn)楹瘮?shù)SKIPIF1<0有兩個(gè)零點(diǎn)SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0=0,所SKIPIF1<0有兩個(gè)零點(diǎn)SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,所以選項(xiàng)A正確;因?yàn)镾KIPIF1<0,所以SKIPIF1<0因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以選項(xiàng)B正確;因?yàn)镾KIPIF1<0,所以選項(xiàng)C錯(cuò)誤;SKIPIF1<0,所以SKIPIF1<0,所以選項(xiàng)D錯(cuò)誤.故選:AB【規(guī)律方法】已知函數(shù)有零點(diǎn)求參數(shù)取值范圍常用的方法和思路:(1)直接法:直接根據(jù)題設(shè)條件構(gòu)建關(guān)于參數(shù)的不等式,再通過(guò)解不等式確定參數(shù)范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)值域問(wèn)題加以解決;(3)數(shù)形結(jié)合法:先對(duì)解析式變形,在同一平面直角坐標(biāo)系中,畫(huà)出函數(shù)的圖象,然后數(shù)形結(jié)合求解.【變式4-1】已知函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,給出下列命題:①當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;②函數(shù)SKIPIF1<0有2個(gè)零點(diǎn);③SKIPIF1<0的解集為SKIPIF1<0;④SKIPIF1<0,SKIPIF1<0,都有SKIPIF1<0.其中正確的命題是()A.①④ B.②③ C.①③ D.②④【答案】A【解析】對(duì)于①,利用奇偶性求SKIPIF1<0時(shí)的解析式即可判斷;對(duì)于②,直接求出零點(diǎn)即可判斷;對(duì)于③,直接解不等式,得到解集即可判斷;對(duì)于④,用導(dǎo)數(shù)判斷單調(diào)性,結(jié)合圖象求出SKIPIF1<0的值域即可判斷.【詳解】解:函數(shù)SKIPIF1<0定義在SKIPIF1<0上的奇函數(shù),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,下面逐一判斷:對(duì)于①,當(dāng)SKIPIF1<0時(shí),則SKIPIF1<0,所以SKIPIF1<0,整理得SKIPIF1<0,故①正確;對(duì)于②,當(dāng)SKIPIF1<0時(shí),由SKIPIF1<0可得SKIPIF1<0,即SKIPIF1<0,故SKIPIF1<0,又函數(shù)SKIPIF1<0在SKIPIF1<0處有定義,故SKIPIF1<0,故函數(shù)SKIPIF1<0有3個(gè)零點(diǎn),故②錯(cuò)誤;對(duì)于③,當(dāng)SKIPIF1<0時(shí),則SKIPIF1<0的解集為SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的解集為SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0成立.故SKIPIF1<0的解集為SKIPIF1<0,故③錯(cuò)誤;對(duì)于④,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0時(shí),有SKIPIF1<0,SKIPIF1<0時(shí),有SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0時(shí)SKIPIF1<0取得最小值SKIPIF1<0,且SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0時(shí),所以SKIPIF1<0,即SKIPIF1<0,可作大致圖象如下,再根據(jù)對(duì)稱(chēng)性作SKIPIF1<0時(shí)的大致圖象,綜上SKIPIF1<0時(shí),SKIPIF1<0值域?yàn)镾KIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0值域?yàn)镾KIPIF1<0,而SKIPIF1<0所以SKIPIF1<0的值域?yàn)镾KIPIF1<0.故SKIPIF1<0,SKIPIF1<0,都有SKIPIF1<0,即SKIPIF1<0SKIPIF1<0,故SKIPIF1<0,即④正確.故選:A.【變式5-1】已知函數(shù)SKIPIF1<0,若方程SKIPIF1<0有四個(gè)不同的根SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的取值范圍是______.【答案】SKIPIF1<0【解析】設(shè)SKIPIF1<0<SKIPIF1<0<SKIPIF1<0<SKIPIF1<0,由SKIPIF1<0,SKIPIF1<0,則問(wèn)題轉(zhuǎn)化為SKIPIF1<0,根據(jù)SKIPIF1<0,求得范圍即可.【詳解】設(shè)SKIPIF1<0<SKIPIF1<0<SKIPIF1<0<SKIPIF1<0,則SKIPIF1<0,由圖知SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0或4,則SKIPIF1<0故SKIPIF1<0,易知其在SKIPIF1<0單減,故SKIPIF1<0故答案為:SKIPIF1<0【總結(jié)提升】函數(shù)零點(diǎn)的應(yīng)用主要體現(xiàn)在三類(lèi)問(wèn)題:一是函數(shù)中不含參數(shù),零點(diǎn)又不易直接求出,考查各零點(diǎn)的和或范圍問(wèn)題;二是函數(shù)中含有參數(shù),根據(jù)零點(diǎn)情況求函數(shù)中參數(shù)的范圍;三是函數(shù)中有參數(shù),但不求參數(shù),仍是考查零點(diǎn)的范圍問(wèn)題.這三類(lèi)問(wèn)題最終都是通過(guò)數(shù)形結(jié)合轉(zhuǎn)化為兩函數(shù)圖象的交點(diǎn)進(jìn)行解決.【考點(diǎn)易錯(cuò)】易錯(cuò)01確定函數(shù)零點(diǎn)的個(gè)數(shù)1.二次函數(shù)SKIPIF1<0中,SKIPIF1<0,則函數(shù)的零點(diǎn)的個(gè)數(shù)是()A.1B.2C.0D.無(wú)法確定【解析】解法1:SKIPIF1<0∴方程SKIPIF1<0有兩個(gè)不相等的實(shí)數(shù)根∴函數(shù)SKIPIF1<0有兩個(gè)零點(diǎn),選B.解法2:SKIPIF1<0SKIPIF1<0,不論哪種情況,二次函數(shù)圖象與x軸都有兩個(gè)交點(diǎn),所以函數(shù)有兩個(gè)零點(diǎn).選B.點(diǎn)評(píng):可以利用函數(shù)圖象或方程的判別式.【變式1-1】設(shè)函數(shù)f(x)=4sin(2x+1)-x,則在下列區(qū)間中函數(shù)f(x)不存在零點(diǎn)的是()A.[-4,-2] B.[-2,0]C.[0,2] D.[2,4]【答案】:A【解析】:本題判斷f(x)=0在區(qū)間內(nèi)是否成立,即4sin(2x+1)=x是否有解.如圖:顯然在[2,4]內(nèi)曲線y=4sin(2x+1),當(dāng)x=eq\f(5,4)π-eq\f(1,2)時(shí),y=4,而曲線y=x,當(dāng)x=eq\f(5,4)π-eq\f(1,2)<4,有交點(diǎn),故選A.【變式1-2】定義在SKIPIF1<0上的奇函數(shù)SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則關(guān)于SKIPIF1<0的函數(shù)SKIPIF1<0的所有零點(diǎn)之和為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】:D【解析】當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0為奇函數(shù)SKIPIF1<0時(shí),SKIPIF1<0畫(huà)出SKIPIF1<0和SKIPIF1<0的圖像如圖所示:共有5個(gè)交點(diǎn),設(shè)其橫坐標(biāo)從左到右分別為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,而SKIPIF1<0即SKIPIF1<0SKIPIF1<0即SKIPIF1<0所以SKIPIF1<0,故選D.易錯(cuò)02用二分法求函數(shù)的零點(diǎn)的近似值2、求函數(shù)SKIPIF1<0的一個(gè)正數(shù)零點(diǎn)(精確到0.1).【解析】解:由于SKIPIF1<0,可取區(qū)間SKIPIF1<0作為計(jì)算的初始區(qū)間,用二分法逐步計(jì)算,列表如下:區(qū)間中點(diǎn)中點(diǎn)函數(shù)值[1,2]1.5-2.625[1.5,2]1.750.2344[1.5,1.75]1.625-1.3027[1.625,1.75]1.6875-0.5618[1.6875,1.75]1.71875-0.1709由上表計(jì)算可知,區(qū)間[1.6875,1.75]的長(zhǎng)度1.75-1.6875=0.0625<0.1,所以可以將1.6875的近似值1.7作為函數(shù)零點(diǎn)的近似值.點(diǎn)評(píng):應(yīng)首先判斷x的取正整數(shù)時(shí),函數(shù)值的正負(fù),使正整數(shù)所對(duì)應(yīng)的區(qū)間盡量小,便于利用二分法求其近似值.【變式2-1】用二分法求函數(shù)SKIPIF1<0的一個(gè)正零點(diǎn)(精確到SKIPIF1<0)【解析】解:⑴由SKIPIF1<0,SKIPIF1<0可知函數(shù)的一個(gè)正零點(diǎn)在SKIPIF1<0區(qū)間中;⑵取SKIPIF1<0的區(qū)間中點(diǎn)SKIPIF1<0;⑶計(jì)算SKIPIF1<0;⑷由于SKIPIF1<0,則有零點(diǎn)的新區(qū)間為SKIPIF1<0⑸取SKIPIF1<0的區(qū)間中點(diǎn)SKIPIF1<0;⑹計(jì)算SKIPIF1<0;⑺由于SKIPIF1<0,則有零點(diǎn)的新區(qū)間為SKIPIF1<0;⑻取SKIPIF1<0的區(qū)間中點(diǎn)SKIPIF1<0;⑼計(jì)算SKIPIF1<0;⑽由于SKIPIF1<0,則有零點(diǎn)的新區(qū)間為SKIPIF1<0;⑾取SKIPIF1<0的區(qū)間中點(diǎn)SKIPIF1<0;⑿計(jì)算SKIPIF1<0;⒀由于SKIPIF1<0,則有零點(diǎn)的新區(qū)間為SKIPIF1<0;⒁取SKIPIF1<0的區(qū)間中點(diǎn)SKIPIF1<0⒂計(jì)算SKIPIF1<0;⒃由于SKIPIF1<0,則有零點(diǎn)的新區(qū)間為SKIPIF1<0;⒄取SKIPIF1<0的區(qū)間中點(diǎn)SKIPIF1<0;⒅計(jì)算SKIPIF1<0;⒆由于SKIPIF1<0,⒇由于SKIPIF1<0,則有零點(diǎn)的新區(qū)間為SKIPIF1<0;又因?yàn)榱泓c(diǎn)要求精確到SKIPIF1<0,而區(qū)間兩端點(diǎn)近似值相同都是2.24,所以函數(shù)SKIPIF1<0的一個(gè)正零點(diǎn)為:2.24.易錯(cuò)03函數(shù)與方程綜合應(yīng)用3、定義域?yàn)镽的偶函數(shù)f(x),當(dāng)x>0時(shí),f(x)=lnx-ax(a∈R),方程f(x)=0在R上恰有5個(gè)不同的實(shí)數(shù)解.(1)求x<0時(shí),函數(shù)f(x)的解析式;(2)求實(shí)數(shù)a的取值范圍.【解析】:(1)設(shè)x<0,則-x>0,∵f(x)是偶函數(shù),∴f(x)=f(-x)=ln(-x)+ax(x<0).(2)∵f(x)是偶函數(shù),∴f(x)=0的根關(guān)于x=0對(duì)稱(chēng),又f(x)=0恰有5個(gè)實(shí)數(shù)根,則5個(gè)根有兩正根,兩負(fù)根,一零根,且兩正根與兩負(fù)根互為相反數(shù),∴原命題可轉(zhuǎn)化為:當(dāng)x>0時(shí),f(x)的圖像與x軸恰有兩個(gè)不同的交點(diǎn).下面就x>0時(shí)的情況討論.∵f′(x)=eq\f(1,x)-a,∴當(dāng)a≤0,f′(x)>0,f(x)=lnx-ax在(0,+∞)上為增函數(shù),故f(x)=0在(0,+∞)上不可能有兩個(gè)實(shí)根.a(chǎn)>0時(shí),令f′(x)=0,x=eq\f(1,a).當(dāng)0<x<eq\f(1,a)時(shí),f′(x)>0,f(x)遞增,當(dāng)x>eq\f(1,a)時(shí),f′(x)<0,f(x)遞減,∴f(x)在x=eq\f(1,a)處取得極大值-lna-1,則要使f(x)在(0,+∞)有兩個(gè)相異零點(diǎn),如圖.∴只要:-lna-1>0,即lna<-1,得:a∈eq\b\lc\(\rc\)(\a\vs4\al\co1(0,\f(1,e))).【變式3-1】已知函數(shù)f(x)=4x+m·2x+1有且僅有一個(gè)零點(diǎn),求m的取值范圍,并求出該零點(diǎn).【解析】:∵f(x)=4x+m·2x+1有且僅有一個(gè)零點(diǎn),即方程(2x)2+m·2x+1=0僅有一個(gè)實(shí)根.設(shè)2x=t(t>0),則t2+mt+1=0.當(dāng)Δ=0時(shí),即m2-4=0,∴m=-2時(shí),t=1;m=2時(shí),t=-1不合題意,舍去,∴2x=1,x=0符合題意.當(dāng)Δ>0,即m>2或m<-2時(shí),t2+mt+1=0有兩正根或兩負(fù)根,f(x)有兩個(gè)零點(diǎn)或無(wú)零點(diǎn)不合題意.∴這種情況不可能.綜上可知:m=-2時(shí),f(x)有唯一零點(diǎn),該零點(diǎn)為x=0.【鞏固提升】1.(2022·浙江高一期末)方程SKIPIF1<0(其中SKIPIF1<0)的根所在的區(qū)間為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】由函數(shù)SKIPIF1<0的單調(diào)性和函數(shù)零點(diǎn)存在定理,即可判斷零點(diǎn)所在的區(qū)間.【詳解】函數(shù)SKIPIF1<0在SKIPIF1<0上為增函數(shù),由SKIPIF1<0,SKIPIF1<0(1)SKIPIF1<0,SKIPIF1<0(1)SKIPIF1<0結(jié)合函數(shù)零點(diǎn)存在定理可得方程的解在SKIPIF1<0,SKIPIF1<0內(nèi).故選:SKIPIF1<0.2.(2022·江西高三其他模擬(理))已知函數(shù)SKIPIF1<0,若函數(shù)SKIPIF1<0,僅有1個(gè)零點(diǎn),則實(shí)數(shù)SKIPIF1<0的取值范圍為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】令SKIPIF1<0,故SKIPIF1<0,然后作出函數(shù)圖像,求出函數(shù)在SKIPIF1<0處的切線的斜率可得答案【詳解】令SKIPIF1<0,故SKIPIF1<0,作出函數(shù)SKIPIF1<0的大致圖像如圖所示,觀察可知,臨界狀態(tài)為直線SKIPIF1<0與曲線SKIPIF1<0在SKIPIF1<0處的切線,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0,所以切線的斜率為SKIPIF1<0,所以SKIPIF1<0,故選:A.3.(2022·山東煙臺(tái)市·高三二模)已知函數(shù)SKIPIF1<0是定義在區(qū)間SKIPIF1<0上的偶函數(shù),且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則方程SKIPIF1<0根的個(gè)數(shù)為()A.3 B.4 C.5 D.6【答案】D【解析】將問(wèn)題轉(zhuǎn)化為SKIPIF1<0與SKIPIF1<0的交點(diǎn)個(gè)數(shù),由解析式畫(huà)出在SKIPIF1<0上的圖象,再結(jié)合偶函數(shù)的對(duì)稱(chēng)性即可知定義域上的交點(diǎn)個(gè)數(shù).【詳解】要求方程SKIPIF1<0根的個(gè)數(shù),即為求SKIPIF1<0與SKIPIF1<0的交點(diǎn)個(gè)數(shù),由題設(shè)知,在SKIPIF1<0上的圖象如下圖示,∴由圖知:有3個(gè)交點(diǎn),又由SKIPIF1<0在SKIPIF1<0上是偶函數(shù),∴在SKIPIF1<0上也有3個(gè)交點(diǎn),故一共有6個(gè)交點(diǎn).故選:D.4.【多選題】(2022·遼寧高三月考)已知定義域?yàn)镾KIPIF1<0的函數(shù)SKIPIF1<0滿足SKIPIF1<0是奇函數(shù),SKIPIF1<0為偶函數(shù),當(dāng)SKIPIF1<0,SKIPIF1<0,則()A.SKIPIF1<0是偶函數(shù) B.SKIPIF1<0的圖象關(guān)于SKIPIF1<0對(duì)稱(chēng)C.SKIPIF1<0在SKIPIF1<0上有3個(gè)實(shí)數(shù)根 D.SKIPIF1<0【答案】BC【解析】由SKIPIF1<0為偶函數(shù),得到SKIPIF1<0的圖象關(guān)于SKIPIF1<0對(duì)稱(chēng),可判定B正確;由SKIPIF1<0是奇函數(shù),得到函數(shù)SKIPIF1<0關(guān)于點(diǎn)SKIPIF1<0對(duì)稱(chēng),得到SKIPIF1<0和SKIPIF1<0,根據(jù)題意,求得SKIPIF1<0,可判定D不正確;由SKIPIF1<0,可判定A不正確;由SKIPIF1<0,可判定C正確.【詳解】根據(jù)題意,可得函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,由函數(shù)SKIPIF1<0為偶函數(shù),可得函數(shù)SKIPIF1<0的圖象關(guān)于SKIPIF1<0對(duì)稱(chēng),即SKIPIF1<0,所以B正確;由函數(shù)SKIPIF1<0是奇函數(shù),可得函數(shù)SKIPIF1<0的圖象關(guān)于點(diǎn)SKIPIF1<0對(duì)稱(chēng),即SKIPIF1<0,可得SKIPIF1<0,則SKIPIF1<0,即函數(shù)SKIPIF1<0是以8為周期的周期函數(shù),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,可得SKIPIF1<0,即SKIPIF1<0,所以D不正確;由函數(shù)SKIPIF1<0是以8為周期的周期函數(shù),可得SKIPIF1<0,因?yàn)镾KIPIF1<0,令SKIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0,所以函數(shù)SKIPIF1<0一定不是偶函數(shù),所以A不正確;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0,由SKIPIF1<0,可得SKIPIF1<0,又由SKIPIF1<0,所以C正確.故選:BC.5.(2022·河南高三月考(文))已知函數(shù)SKIPIF1<0,若關(guān)于SKIPIF1<0的方程SKIPIF1<0有四個(gè)不同的實(shí)根,則實(shí)數(shù)SKIPIF1<0的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】畫(huà)出函數(shù)圖象,題目等價(jià)于SKIPIF1<0與SKIPIF1<0有四個(gè)不同的交點(diǎn),數(shù)形結(jié)合可得SKIPIF1<0且直線SKIPIF1<0與曲線SKIPIF1<0,SKIPIF1<0,有兩個(gè)不同的公共點(diǎn),滿足SKIPIF1<0在SKIPIF1<0內(nèi)有兩個(gè)不等實(shí)根即可.【詳解】畫(huà)出SKIPIF1<0的函數(shù)圖象,設(shè)SKIPIF1<0,該直線恒過(guò)點(diǎn)SKIPIF1<0,結(jié)合函數(shù)圖象,可知若方程SKIPIF1<0有四個(gè)不同的實(shí)數(shù)根,則SKIPIF1<0且直線SKIPIF1<0與曲線SKIPIF1<0,SKIPIF1<0,有兩個(gè)不同的公共點(diǎn),所以SKIPIF1<0在SKIPIF1<0內(nèi)有兩個(gè)不等實(shí)根,令SKIPIF1<0,實(shí)數(shù)SKIPIF1<0滿足SKIPIF1<0,解得SKIPIF1<0,又SKIPIF1<0,所以實(shí)數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.故選:D.6.(2022·浙江杭州市·杭十四中高三其他模擬)已知二次函數(shù)SKIPIF1<0有兩個(gè)不同的零點(diǎn),若SKIPIF1<0有四個(gè)不同的根SKIPIF1<0,且SKIPIF1<0成等差數(shù)列,則SKIPIF1<0不可能是()A.0 B.1 C.2 D.3【答案】D【解析】設(shè)SKIPIF1<0的兩個(gè)不同零點(diǎn)為m,n,且m>n,根據(jù)韋達(dá)定理,可得SKIPIF1<0,SKIPIF1<0的表達(dá)式,根據(jù)SKIPIF1<0有四個(gè)不同的根SKIPIF1<0,可得以SKIPIF1<0對(duì)應(yīng)的根為SKIPIF1<0,SKIPIF1<0對(duì)應(yīng)的根為SKIPIF1<0,根據(jù)韋達(dá)定理,可得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0表達(dá)式,根據(jù)題意,計(jì)算化簡(jiǎn),可得m,n的關(guān)系,代入SKIPIF1<0,根據(jù)二次函數(shù)的性質(zhì),即可得答案.【詳解】設(shè)SKIPIF1<0的兩個(gè)不同零點(diǎn)為m,n,且m>n,所以SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,又因?yàn)镾KIPIF1<0有四個(gè)不同的根SKIPIF1<0,所以SKIPIF1<0對(duì)應(yīng)的根為SKIPIF1<0,SKIPIF1<0對(duì)應(yīng)的根為SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,同理SKIPIF1<0,因?yàn)镾KIPIF1<0成等差數(shù)列,所以SKIPIF1<0,則SKIPIF1<0所以SKIPIF1<0,解得SKIPIF1<0,因?yàn)閙>n,所以SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0有最大值SKIPIF1<0,所以SKIPIF1<0不可能為3.故選:D7.(2022·遼寧高三月考)已知SKIPIF1<0的定義域?yàn)镾KIPIF1<0,且滿足SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0內(nèi)的零點(diǎn)個(gè)數(shù)為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】求出函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0值域及單調(diào)性,由此可得出結(jié)論.【詳解】當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0以此類(lèi)推,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,且函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上為增函數(shù),SKIPIF1<0,所以,函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上有且只有一個(gè)零點(diǎn),且SKIPIF1<0,因此,SKIPIF1<0在SKIPIF1<0內(nèi)的零點(diǎn)個(gè)數(shù)為SKIPIF1<0.故選:B.8.(2022·江西撫州市·高三其他模擬(文))若函數(shù)f(x)滿足SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.若在區(qū)間SKIPIF1<0內(nèi)SKIPIF1<0有兩個(gè)零點(diǎn)則實(shí)數(shù)m的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】由題設(shè)可得SKIPIF1<0,由SKIPIF1<0內(nèi)SKIPIF1<0有兩個(gè)零點(diǎn),可知SKIPIF1<0內(nèi)SKIPIF1<0與SKIPIF1<0有兩個(gè)交點(diǎn),應(yīng)用數(shù)形結(jié)合并利用導(dǎo)數(shù)判斷存在兩個(gè)交點(diǎn)時(shí)m的范圍即可.【詳解】由題意,若SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,∴SKIPIF1<0時(shí),SKIPIF1<0,∴SKIPIF1<0,在SKIPIF1<0內(nèi)SKIPIF1<0有兩個(gè)零點(diǎn),即SKIPIF1<0內(nèi)SKIPIF1<0與SKIPIF1<0有兩個(gè)交點(diǎn),且SKIPIF1<0過(guò)定點(diǎn)SKIPIF1<0,∴SKIPIF1<0時(shí),顯然圖象只有一個(gè)交點(diǎn),即SKIPIF1<0僅有一個(gè)零點(diǎn),SKIPIF1<0時(shí),在SKIPIF1<0右半支上,當(dāng)SKIPIF1<0過(guò)SKIPIF1<0時(shí)SKIPIF1<0,要使SKIPIF1<0上圖象有兩個(gè)交點(diǎn),則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),在SKIPIF1<0左半支上,當(dāng)SKIPIF1<0與SKIPIF1<0相切時(shí)只有一個(gè)交點(diǎn),此時(shí)SKIPIF1<0,得SKIPIF1<0,則SKIPIF1<0,∴SKIPIF1<0,整理得SKIPIF1<0,可得SKIPIF1<0,∴要使SKIPIF1<0上圖象有兩個(gè)交點(diǎn),則SKIPIF1<0.綜上,SKIPIF1<0SKIPIF1<0.故選:A9.(2020·全國(guó)高三專(zhuān)題練習(xí))設(shè)函數(shù)y=x3與y=x-2的圖象的交點(diǎn)為(x0,y0),若x0∈(n,n+1),n∈N,則x0所在的區(qū)間是________.【答案】(1,2)【解析】設(shè)f(x)=x3-SKIPIF1<0,則x0是函數(shù)f(x)的零點(diǎn),根據(jù)圖象,結(jié)合零點(diǎn)存在定理,可得x0的所在區(qū)間.【詳解】設(shè)f(x)=x3-SKIPIF1<0,則x0是函數(shù)f(x)的零點(diǎn),在同一坐標(biāo)系下畫(huà)出函數(shù)y=x3與y=SKIPIF1<0的圖象如圖所示
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 【正版授權(quán)】 IEC 62427:2024 EN Railway applications - Compatibility between rolling stock and train detection systems
- 2025年山西省建筑安全員考試題庫(kù)
- 2025-2030年中國(guó)金屬錫產(chǎn)業(yè)運(yùn)行動(dòng)態(tài)與發(fā)展戰(zhàn)略分析報(bào)告
- 2025-2030年中國(guó)配電變壓器市場(chǎng)運(yùn)營(yíng)狀況及發(fā)展前景分析報(bào)告
- 2025-2030年中國(guó)裝飾畫(huà)市場(chǎng)現(xiàn)狀調(diào)研及投資發(fā)展?jié)摿Ψ治鰣?bào)告
- 2025-2030年中國(guó)船舶修理行業(yè)市場(chǎng)競(jìng)爭(zhēng)狀況及發(fā)展現(xiàn)狀分析報(bào)告
- 2025-2030年中國(guó)經(jīng)編機(jī)行業(yè)運(yùn)行現(xiàn)狀及發(fā)展前景分析報(bào)告
- 2025-2030年中國(guó)等離子廢氣凈化器市場(chǎng)發(fā)展現(xiàn)狀規(guī)劃研究報(bào)告
- 2025-2030年中國(guó)祛痘護(hù)膚品市場(chǎng)需求狀況及發(fā)展盈利分析報(bào)告
- 2025-2030年中國(guó)硼酸市場(chǎng)發(fā)展現(xiàn)狀與十三五規(guī)劃研究報(bào)告
- 高教版2023年中職教科書(shū)《語(yǔ)文》(基礎(chǔ)模塊)上冊(cè)教案全冊(cè)
- 存款代持協(xié)議書(shū)范文模板
- 2023年部編人教版三年級(jí)《道德與法治》下冊(cè)全冊(cè)課件【全套】
- 光伏項(xiàng)目施工總進(jìn)度計(jì)劃表(含三級(jí))
- 七年級(jí)語(yǔ)文閱讀理解十篇含答案解析
- 單元知識(shí)結(jié)構(gòu)圖(排球)
- 卡通風(fēng)寒假生活PPT模板課件
- 教學(xué)課件:物流營(yíng)銷(xiāo)
- 小兒泄瀉(小兒腹瀉?。┰\療方案
- 種子內(nèi)部構(gòu)造圖片集
- 羊水栓塞的處理)
評(píng)論
0/150
提交評(píng)論