湖南工商大學(xué)《品牌整體形象設(shè)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁(yè)
湖南工商大學(xué)《品牌整體形象設(shè)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁(yè)
湖南工商大學(xué)《品牌整體形象設(shè)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁(yè)
湖南工商大學(xué)《品牌整體形象設(shè)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁(yè)
湖南工商大學(xué)《品牌整體形象設(shè)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁(yè)
已閱讀5頁(yè),還剩2頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

自覺(jué)遵守考場(chǎng)紀(jì)律如考試作弊此答卷無(wú)效密自覺(jué)遵守考場(chǎng)紀(jì)律如考試作弊此答卷無(wú)效密封線第1頁(yè),共3頁(yè)湖南工商大學(xué)《品牌整體形象設(shè)計(jì)》

2023-2024學(xué)年第一學(xué)期期末試卷院(系)_______班級(jí)_______學(xué)號(hào)_______姓名_______題號(hào)一二三四總分得分批閱人一、單選題(本大題共25個(gè)小題,每小題1分,共25分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、假設(shè)要開(kāi)發(fā)一個(gè)能夠?qū)χ讣y進(jìn)行識(shí)別和認(rèn)證的計(jì)算機(jī)視覺(jué)系統(tǒng),以下哪種特征提取和匹配方法可能在指紋識(shí)別中具有較高的準(zhǔn)確性?()A.細(xì)節(jié)點(diǎn)提取B.方向場(chǎng)提取C.紋理特征提取D.以上都是2、假設(shè)要構(gòu)建一個(gè)能夠?qū)?shū)畫(huà)作品進(jìn)行真?zhèn)舞b定的計(jì)算機(jī)視覺(jué)系統(tǒng),需要對(duì)作品的筆觸、線條和風(fēng)格等特征進(jìn)行分析。以下哪種技術(shù)在書(shū)畫(huà)鑒定中可能具有應(yīng)用前景?()A.筆跡分析B.風(fēng)格遷移C.圖像風(fēng)格分析D.以上都是3、計(jì)算機(jī)視覺(jué)中的視覺(jué)跟蹤在監(jiān)控、機(jī)器人導(dǎo)航等領(lǐng)域有廣泛應(yīng)用。假設(shè)一個(gè)機(jī)器人需要跟蹤一個(gè)移動(dòng)的物體,同時(shí)適應(yīng)物體的外觀變化和環(huán)境干擾。以下哪種視覺(jué)跟蹤方法能夠提供較好的長(zhǎng)期跟蹤性能和魯棒性?()A.基于核相關(guān)濾波的跟蹤方法B.基于深度學(xué)習(xí)的孿生網(wǎng)絡(luò)跟蹤方法C.基于粒子濾波和特征匹配的跟蹤方法D.基于背景減除和運(yùn)動(dòng)估計(jì)的跟蹤方法4、假設(shè)要開(kāi)發(fā)一個(gè)能夠自動(dòng)識(shí)別水果種類(lèi)和品質(zhì)的計(jì)算機(jī)視覺(jué)系統(tǒng),用于水果分揀和質(zhì)量評(píng)估。在獲取水果圖像時(shí),可能會(huì)受到光照、角度和遮擋等因素的影響。為了提高識(shí)別的準(zhǔn)確性和魯棒性,以下哪種圖像預(yù)處理技術(shù)可能是關(guān)鍵?()A.圖像增強(qiáng)B.圖像去噪C.圖像歸一化D.圖像分割5、在計(jì)算機(jī)視覺(jué)的圖像分割任務(wù)中,假設(shè)要對(duì)細(xì)胞圖像進(jìn)行精細(xì)分割。以下關(guān)于模型選擇的考慮因素,哪一項(xiàng)是不準(zhǔn)確的?()A.模型對(duì)細(xì)胞邊界的捕捉能力B.模型在小樣本數(shù)據(jù)上的泛化能力C.模型的訓(xùn)練時(shí)間和計(jì)算資源需求D.模型的知名度和在學(xué)術(shù)圈的引用次數(shù)6、圖像超分辨率是指從低分辨率圖像生成高分辨率圖像。假設(shè)我們有一張模糊的低分辨率老照片,想要將其清晰化并提高分辨率。以下哪種圖像超分辨率方法能夠生成更逼真的細(xì)節(jié)和更清晰的邊緣?()A.基于插值的方法,如雙線性插值B.基于重建的方法,如基于字典學(xué)習(xí)的方法C.基于深度學(xué)習(xí)的方法,如SRCNND.基于小波變換的方法7、計(jì)算機(jī)視覺(jué)中的目標(biāo)重識(shí)別任務(wù)旨在在不同的攝像頭視角中識(shí)別出同一目標(biāo)。假設(shè)要在一個(gè)大型商場(chǎng)的多個(gè)攝像頭中尋找一個(gè)特定的人物。以下關(guān)于目標(biāo)重識(shí)別的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.可以通過(guò)提取目標(biāo)的特征,如顏色、形狀和紋理,來(lái)進(jìn)行重識(shí)別B.深度學(xué)習(xí)中的特征學(xué)習(xí)方法能夠提高目標(biāo)重識(shí)別的準(zhǔn)確率C.目標(biāo)重識(shí)別不受攝像頭視角、光照和人物姿態(tài)變化的影響D.可以通過(guò)建立目標(biāo)的特征庫(kù),快速在多個(gè)攝像頭中進(jìn)行匹配和搜索8、當(dāng)進(jìn)行圖像的風(fēng)格遷移任務(wù)時(shí),假設(shè)要將一張照片的風(fēng)格轉(zhuǎn)換為著名繪畫(huà)的風(fēng)格,同時(shí)保留照片的內(nèi)容結(jié)構(gòu)。以下哪種方法在實(shí)現(xiàn)這一目標(biāo)時(shí)可能更有效?()A.使用基于卷積神經(jīng)網(wǎng)絡(luò)的風(fēng)格遷移算法,如Gatys等人提出的方法B.對(duì)圖像進(jìn)行簡(jiǎn)單的色彩變換和濾鏡處理C.隨機(jī)改變圖像的像素值來(lái)模擬風(fēng)格遷移D.只對(duì)圖像的邊緣進(jìn)行處理,忽略?xún)?nèi)部區(qū)域9、在計(jì)算機(jī)視覺(jué)的全景圖像生成任務(wù)中,將多幅局部圖像拼接成一幅全景圖像。假設(shè)要生成一個(gè)城市景觀的全景圖像,以下關(guān)于全景圖像生成方法的描述,哪一項(xiàng)是不正確的?()A.首先需要對(duì)局部圖像進(jìn)行特征提取和匹配,找到它們之間的對(duì)應(yīng)關(guān)系B.可以使用圖像變形和融合技術(shù)來(lái)消除拼接處的縫隙和色差C.全景圖像生成不受拍攝角度、光照條件和相機(jī)參數(shù)的影響,能夠完美拼接任何圖像D.基于深度學(xué)習(xí)的方法能夠自動(dòng)學(xué)習(xí)全景圖像的生成規(guī)律,提高拼接效果10、在計(jì)算機(jī)視覺(jué)的人物姿態(tài)估計(jì)任務(wù)中,需要確定圖像中人物的關(guān)節(jié)位置和姿態(tài)。假設(shè)要開(kāi)發(fā)一個(gè)用于健身應(yīng)用的姿態(tài)估計(jì)系統(tǒng),以下關(guān)于模型訓(xùn)練數(shù)據(jù)的獲取,哪一項(xiàng)是比較困難的?()A.從公開(kāi)的數(shù)據(jù)集獲取大量的人物姿態(tài)圖像B.自己拍攝不同人群在各種健身動(dòng)作下的圖像C.利用合成數(shù)據(jù)生成多樣化的人物姿態(tài)樣本D.從社交媒體上收集用戶(hù)分享的健身照片11、計(jì)算機(jī)視覺(jué)中的視覺(jué)注意力機(jī)制用于聚焦圖像中的重要區(qū)域。以下關(guān)于視覺(jué)注意力機(jī)制的說(shuō)法,不正確的是()A.視覺(jué)注意力機(jī)制可以根據(jù)圖像的特征和任務(wù)需求動(dòng)態(tài)地選擇關(guān)注的區(qū)域B.注意力機(jī)制能夠提高模型的效率和性能,減少對(duì)無(wú)關(guān)信息的處理C.視覺(jué)注意力機(jī)制在圖像分類(lèi)、目標(biāo)檢測(cè)和圖像生成等任務(wù)中得到了廣泛應(yīng)用D.視覺(jué)注意力機(jī)制的引入會(huì)增加模型的復(fù)雜度和計(jì)算量,降低模型的訓(xùn)練速度12、在計(jì)算機(jī)視覺(jué)中,目標(biāo)檢測(cè)是一項(xiàng)重要任務(wù)。假設(shè)要在一張包含眾多物體的復(fù)雜圖像中準(zhǔn)確檢測(cè)出不同類(lèi)型的車(chē)輛,例如轎車(chē)、卡車(chē)和摩托車(chē)。圖像中的車(chē)輛可能具有不同的顏色、大小和姿態(tài),而且背景也較為復(fù)雜。為了實(shí)現(xiàn)高精度的車(chē)輛檢測(cè),以下哪種方法通常被認(rèn)為是最有效的?()A.基于傳統(tǒng)圖像處理技術(shù),如邊緣檢測(cè)和形態(tài)學(xué)操作B.使用基于深度學(xué)習(xí)的目標(biāo)檢測(cè)算法,如FasterR-CNNC.采用簡(jiǎn)單的模板匹配方法,根據(jù)預(yù)先定義的車(chē)輛模板進(jìn)行匹配D.對(duì)圖像進(jìn)行全局特征提取,然后基于這些特征進(jìn)行分類(lèi)13、在計(jì)算機(jī)視覺(jué)的圖像分割任務(wù)中,需要將圖像中的不同物體或區(qū)域準(zhǔn)確地劃分出來(lái)。假設(shè)要對(duì)一張包含多個(gè)水果的圖像進(jìn)行精確分割,每個(gè)水果的邊界可能不清晰,且存在部分重疊和陰影。以下哪種圖像分割算法在處理這種具有挑戰(zhàn)性的情況時(shí)表現(xiàn)更為出色?()A.基于閾值的分割B.基于區(qū)域的分割C.基于邊緣檢測(cè)的分割D.基于深度學(xué)習(xí)的語(yǔ)義分割14、在計(jì)算機(jī)視覺(jué)的圖像去噪任務(wù)中,假設(shè)要去除一張受到嚴(yán)重噪聲污染的圖像中的噪聲。以下關(guān)于圖像去噪方法的描述,正確的是:()A.中值濾波能夠有效地去除椒鹽噪聲,但會(huì)使圖像變得模糊B.均值濾波在去除噪聲的同時(shí)能夠很好地保留圖像的細(xì)節(jié)信息C.小波變換去噪方法計(jì)算復(fù)雜度高,不適合處理大規(guī)模圖像D.所有的圖像去噪方法都能夠完全恢復(fù)出原始的無(wú)噪圖像15、計(jì)算機(jī)視覺(jué)中的行人重識(shí)別任務(wù)是在不同攝像頭中識(shí)別出特定的行人。假設(shè)要在一個(gè)大型火車(chē)站中尋找一個(gè)走失的兒童。以下關(guān)于行人重識(shí)別的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.可以利用行人的服裝顏色、款式和攜帶物品等特征進(jìn)行重識(shí)別B.深度學(xué)習(xí)中的度量學(xué)習(xí)方法可以學(xué)習(xí)行人的特征表示,提高重識(shí)別的準(zhǔn)確率C.行人重識(shí)別不受行人姿態(tài)變化和攝像頭視角差異的影響D.可以通過(guò)構(gòu)建大規(guī)模的行人數(shù)據(jù)集進(jìn)行訓(xùn)練,提升模型的泛化能力16、計(jì)算機(jī)視覺(jué)在自動(dòng)駕駛領(lǐng)域發(fā)揮著重要作用。假設(shè)一輛自動(dòng)駕駛汽車(chē)正在道路上行駛,需要識(shí)別各種交通標(biāo)志、車(chē)輛和行人。以下關(guān)于自動(dòng)駕駛中計(jì)算機(jī)視覺(jué)的描述,哪一項(xiàng)是不正確的?()A.計(jì)算機(jī)視覺(jué)可以通過(guò)攝像頭實(shí)時(shí)獲取道路信息,為車(chē)輛的決策和控制提供依據(jù)B.它能夠準(zhǔn)確識(shí)別不同光照和天氣條件下的交通對(duì)象,不受任何干擾C.深度學(xué)習(xí)算法在自動(dòng)駕駛的計(jì)算機(jī)視覺(jué)中被廣泛應(yīng)用,用于目標(biāo)檢測(cè)和語(yǔ)義分割D.計(jì)算機(jī)視覺(jué)需要與其他傳感器(如雷達(dá)、激光雷達(dá))的數(shù)據(jù)融合,以提高感知的可靠性17、計(jì)算機(jī)視覺(jué)中的圖像配準(zhǔn)是將不同時(shí)間、不同視角或不同傳感器獲取的圖像進(jìn)行匹配和對(duì)齊。以下關(guān)于圖像配準(zhǔn)的敘述,不正確的是()A.圖像配準(zhǔn)需要找到圖像之間的對(duì)應(yīng)點(diǎn)或特征,然后進(jìn)行變換和對(duì)齊B.圖像配準(zhǔn)在醫(yī)學(xué)圖像分析、遙感圖像處理和三維重建等領(lǐng)域有著廣泛的應(yīng)用C.圖像配準(zhǔn)的精度和魯棒性受到圖像質(zhì)量、噪聲和幾何變形等因素的影響D.圖像配準(zhǔn)是一個(gè)簡(jiǎn)單的過(guò)程,不需要復(fù)雜的算法和優(yōu)化18、在計(jì)算機(jī)視覺(jué)中,圖像超分辨率重建是提高圖像分辨率和質(zhì)量的技術(shù)。以下關(guān)于圖像超分辨率重建的敘述,不正確的是()A.圖像超分辨率重建可以通過(guò)插值、基于模型的方法或深度學(xué)習(xí)方法來(lái)實(shí)現(xiàn)B.深度學(xué)習(xí)方法在圖像超分辨率重建中能夠生成更清晰、逼真的細(xì)節(jié)C.圖像超分辨率重建在醫(yī)學(xué)圖像、衛(wèi)星圖像和監(jiān)控圖像等領(lǐng)域有重要的應(yīng)用D.圖像超分辨率重建可以無(wú)限制地提高圖像的分辨率,不受原始圖像信息的限制19、在計(jì)算機(jī)視覺(jué)的應(yīng)用中,人臉識(shí)別技術(shù)受到廣泛關(guān)注。假設(shè)一個(gè)人臉識(shí)別系統(tǒng)正在進(jìn)行身份驗(yàn)證,以下關(guān)于人臉識(shí)別的描述,正確的是:()A.只依靠面部的幾何形狀信息就能實(shí)現(xiàn)準(zhǔn)確的人臉識(shí)別B.光照變化和面部表情對(duì)人臉識(shí)別的準(zhǔn)確率沒(méi)有影響C.結(jié)合深度學(xué)習(xí)模型和多模態(tài)信息,如紅外圖像,可以提高人臉識(shí)別的性能和可靠性D.人臉識(shí)別系統(tǒng)不需要考慮數(shù)據(jù)的隱私和安全問(wèn)題20、計(jì)算機(jī)視覺(jué)在醫(yī)學(xué)圖像分析中有著重要作用。假設(shè)要通過(guò)眼底圖像檢測(cè)糖尿病性視網(wǎng)膜病變,以下關(guān)于模型訓(xùn)練中數(shù)據(jù)標(biāo)注的難度,哪一項(xiàng)是最為顯著的?()A.病變區(qū)域的邊界模糊,難以精確標(biāo)注B.眼底圖像的質(zhì)量參差不齊,影響標(biāo)注準(zhǔn)確性C.標(biāo)注人員的醫(yī)學(xué)知識(shí)不足,導(dǎo)致標(biāo)注錯(cuò)誤D.數(shù)據(jù)量過(guò)大,標(biāo)注工作耗時(shí)費(fèi)力21、計(jì)算機(jī)視覺(jué)中的視頻分析需要對(duì)連續(xù)的圖像幀進(jìn)行處理和理解。假設(shè)要分析一段監(jiān)控視頻中的人群行為,包括行走方向、聚集和分散等。以下哪種視頻分析技術(shù)在處理這種復(fù)雜的群體行為時(shí)最為有效?()A.幀間差分法B.背景減除法C.光流法結(jié)合軌跡分析D.深度學(xué)習(xí)的行為識(shí)別模型22、計(jì)算機(jī)視覺(jué)中的視覺(jué)跟蹤算法常用于跟蹤運(yùn)動(dòng)目標(biāo)。假設(shè)要跟蹤一只在森林中奔跑的動(dòng)物,以下關(guān)于視覺(jué)跟蹤算法的描述,哪一項(xiàng)是不正確的?()A.基于模型的跟蹤算法通過(guò)建立目標(biāo)的模型來(lái)預(yù)測(cè)其位置和狀態(tài)B.基于特征的跟蹤算法依賴(lài)于目標(biāo)的顯著特征進(jìn)行跟蹤C(jī).視覺(jué)跟蹤算法在目標(biāo)發(fā)生快速變形或完全遮擋時(shí)仍能保持準(zhǔn)確跟蹤D.結(jié)合多種線索和信息的融合跟蹤算法可以提高跟蹤的穩(wěn)定性和可靠性23、對(duì)于圖像的語(yǔ)義理解任務(wù),假設(shè)要理解一張圖像所表達(dá)的場(chǎng)景和事件,例如判斷一張圖像是在舉行婚禮還是在舉辦音樂(lè)會(huì)。圖像中的信息可能比較隱晦和復(fù)雜。以下哪種方法可能有助于提高語(yǔ)義理解的準(zhǔn)確性?()A.構(gòu)建圖像的語(yǔ)義圖,分析物體之間的關(guān)系B.只關(guān)注圖像中的主要物體,忽略背景信息C.對(duì)圖像進(jìn)行簡(jiǎn)單的分類(lèi),不進(jìn)行深入的語(yǔ)義分析D.隨機(jī)猜測(cè)圖像的語(yǔ)義24、計(jì)算機(jī)視覺(jué)中的圖像分割任務(wù)旨在將圖像分割成不同的區(qū)域。假設(shè)要對(duì)一張風(fēng)景圖片進(jìn)行分割,區(qū)分天空、陸地和水面。以下關(guān)于圖像分割方法的描述,哪一項(xiàng)是錯(cuò)誤的?()A.基于閾值的分割方法簡(jiǎn)單快速,但對(duì)于復(fù)雜圖像效果不佳B.區(qū)域生長(zhǎng)法從種子點(diǎn)開(kāi)始,逐步合并相似的區(qū)域C.深度學(xué)習(xí)中的全卷積網(wǎng)絡(luò)(FCN)在圖像分割中表現(xiàn)出色,能夠生成精確的分割結(jié)果D.圖像分割的結(jié)果總是清晰明確,不存在模糊或錯(cuò)誤的邊界25、計(jì)算機(jī)視覺(jué)中的紋理分析用于描述圖像中重復(fù)出現(xiàn)的模式和結(jié)構(gòu)。假設(shè)要對(duì)一塊布料的紋理進(jìn)行分析,以判斷其材質(zhì)和質(zhì)量,同時(shí)布料可能存在褶皺和變形。以下哪種紋理分析方法在處理這種復(fù)雜情況時(shí)更為準(zhǔn)確?()A.統(tǒng)計(jì)紋理分析B.結(jié)構(gòu)紋理分析C.基于模型的紋理分析D.基于深度學(xué)習(xí)的紋理分析二、簡(jiǎn)答題(本大題共4個(gè)小題,共20分)1、(本題5分)說(shuō)明計(jì)算機(jī)視覺(jué)在交通流量預(yù)測(cè)中的應(yīng)用。2、(本題5分)解釋計(jì)算機(jī)視覺(jué)中的人體姿態(tài)估計(jì)的應(yīng)用場(chǎng)景。3、(本題5分)描述計(jì)算機(jī)視覺(jué)在地下水監(jiān)測(cè)中的應(yīng)用。4、(本題5分)計(jì)算機(jī)視覺(jué)中如何進(jìn)行跳蚤市場(chǎng)中的商品評(píng)估?三、分析題(本大題共5個(gè)小題,共25分)1、(本題5分)某音樂(lè)專(zhuān)輯的封面設(shè)計(jì)以獨(dú)特的攝影作品和個(gè)性化的字體展現(xiàn)了專(zhuān)輯的風(fēng)格和主題。請(qǐng)?zhí)接懘朔饷嬖O(shè)計(jì)如何吸引聽(tīng)眾,如何與音樂(lè)內(nèi)容相呼應(yīng),以及在傳達(dá)音樂(lè)情感和氛圍方面的作用。2、(本題5分)分析某電商平臺(tái)的首頁(yè)設(shè)計(jì),探討其如何運(yùn)用商品展示、促銷(xiāo)信息和用戶(hù)推薦等元素,吸引用戶(hù)瀏覽和購(gòu)買(mǎi)商品。3、(本題5分)以某游樂(lè)園的宣傳海報(bào)互動(dòng)設(shè)計(jì)為例,闡述其如何運(yùn)用互動(dòng)元素和游戲化設(shè)計(jì),吸引游客參與,提升

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論