版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
第04講一元二次函數(shù)(方程,不等式)(精講+精練)目錄第一部分:思維導(dǎo)圖(總覽全局)第二部分:知識點精準記憶第三部分:課前自我評估測試第四部分:典型例題剖析高頻考點一:一元二次(分式)不等式解法(不含參)高頻考點二:一元二次不等式解法(含參)高頻考點三:一元二次不等式與相應(yīng)的二次函數(shù)(方程)的關(guān)系高頻考點四:一元二次不等式恒成立問題①SKIPIF1<0上恒成立(優(yōu)選SKIPIF1<0法)②SKIPIF1<0上恒成立(優(yōu)選SKIPIF1<0法)③SKIPIF1<0上恒成立(優(yōu)選分離變量法)④SKIPIF1<0上恒成立(優(yōu)選分離變量法)⑤已知參數(shù)SKIPIF1<0,求SKIPIF1<0取值范圍(優(yōu)選變更主元法)高頻考點五:一元二次不等式的應(yīng)用第五部分:高考真題感悟第六部分:第04講一元二次函數(shù)(方程,不等式)(精練)第一部分:思維導(dǎo)圖總覽全局第一部分:思維導(dǎo)圖總覽全局第二部分:知識點精準記憶第二部分:知識點精準記憶1、二次函數(shù)(1)形式:形如SKIPIF1<0的函數(shù)叫做二次函數(shù).(2)特點:①函數(shù)SKIPIF1<0的圖象與SKIPIF1<0軸交點的橫坐標是方程SKIPIF1<0的實根.②當SKIPIF1<0且SKIPIF1<0(SKIPIF1<0)時,恒有SKIPIF1<0(SKIPIF1<0);當SKIPIF1<0且SKIPIF1<0(SKIPIF1<0)時,恒有SKIPIF1<0(SKIPIF1<0).2、一元二次不等式只含有一個未知數(shù),并且未知數(shù)的最高次數(shù)是2的不等式,稱為一元二次不等式.3.SKIPIF1<0或SKIPIF1<0型不等式的解集不等式解集SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<04、一元二次不等式與相應(yīng)的二次函數(shù)及一元二次方程的關(guān)系判別式SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0二次函數(shù)SKIPIF1<0的圖象一元二次方程SKIPIF1<0的根有兩相異實數(shù)根SKIPIF1<0,SKIPIF1<0(SKIPIF1<0)有兩相等實數(shù)根SKIPIF1<0沒有實數(shù)根一元二次不等式SKIPIF1<0的解集SKIPIF1<0SKIPIF1<0SKIPIF1<0一元二次不等式SKIPIF1<0的解集SKIPIF1<0SKIPIF1<0SKIPIF1<05、分式不等式解法(1)SKIPIF1<0(2)SKIPIF1<0(3)SKIPIF1<0(4)SKIPIF1<06、單絕對值不等式(1)SKIPIF1<0(2)SKIPIF1<0第三部分:課前自我評估測試第三部分:課前自我評估測試一、判斷題1.(2022·全國·高三專題練習)已知函數(shù)SKIPIF1<0,關(guān)于x的不等式SKIPIF1<0的解集為SKIPIF1<0,則SKIPIF1<0.___________(判斷對錯)二、單選題1.(2022·貴州畢節(jié)·高一期末)已知不等式SKIPIF1<0的解集為SKIPIF1<0,則a,b的值是(
)A.SKIPIF1<0,SKIPIF1<0 B.SKIPIF1<0,SKIPIF1<0 C.6,3 D.3,62.(2022·江西南昌·一模(理))已知集合SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.(2022·陜西西安·高二期末(文))若關(guān)于SKIPIF1<0的一元二次不等式SKIPIF1<0的解集為SKIPIF1<0,則實數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<04.(2022·廣東珠海·高一期末)已知關(guān)于SKIPIF1<0的不等式SKIPIF1<0的解集是SKIPIF1<0,則SKIPIF1<0的值是(
)A.SKIPIF1<0 B.2 C.22 D.SKIPIF1<05.(2022·寧夏·高三階段練習(文))已知集合SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0第四部分:典型例題剖析第四部分:典型例題剖析高頻考點一:一元二次(分式)不等式解法(不含參)1.(2022·河北·模擬預(yù)測)已知集合SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.(2022·湖南·高一課時練習)下面四個不等式中解集為空集的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<03.(2022·河南·信陽高中高一期末(理))設(shè)集合SKIPIF1<0,N=x∈Zx2?12x?5≤0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<04.(2022·河南南陽·高二期末(文))不等式SKIPIF1<0的一個必要不充分條件是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<05.(2022·河南洛陽·高二期末(文))不等式SKIPIF1<0的解集為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<06.(2022·全國·高三專題練習)設(shè)集合SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0高頻考點二:一元二次不等式解法(含參)一元二次不等式解法(含參問題)談?wù)撊瓌t:①最高項系數(shù)含參,從參數(shù)等于0開始討論;如:SKIPIF1<0,最高項系數(shù)為SKIPIF1<0討論時,從SKIPIF1<0開始討論.②兩根大小不確定,從兩根相等開始討論;如SKIPIF1<0兩根分別為:SKIPIF1<0,SKIPIF1<0,討論時從SKIPIF1<0開始討論③根是否在定義域內(nèi):如SKIPIF1<0此時兩根SKIPIF1<0,SKIPIF1<0,討論時注意SKIPIF1<0(舍去)1.(2022·北京·清華附中高一期末)求下列關(guān)于SKIPIF1<0的不等式的解集:SKIPIF1<02.(2022·河北唐山·高一期末)已知關(guān)于x的不等式:SKIPIF1<0.(1)當SKIPIF1<0時,解此不等式;(2)當SKIPIF1<0時,解此不等式.
3.(2022·福建·莆田第二十五中學(xué)高一期末)解關(guān)于SKIPIF1<0的不等式SKIPIF1<0.4.(2022·全國·高三專題練習)解關(guān)于SKIPIF1<0的不等式:SKIPIF1<0.高頻考點三:一元二次不等式與相應(yīng)的二次函數(shù)(方程)的關(guān)系1.(2021·甘肅·甘南藏族自治州合作第一中學(xué)高一期中)若不等式SKIPIF1<0的解集為[-1,2],則SKIPIF1<0=(
)A.-2 B.-1 C.1 D.22.(2021·四川省南充高級中學(xué)高二開學(xué)考試(理))已知不等式SKIPIF1<0的解集為SKIPIF1<0,則SKIPIF1<0___________.3.(2022·天津市紅橋區(qū)教師發(fā)展中心高一期末)若函數(shù)SKIPIF1<0的兩個零點是2和3,則不等式SKIPIF1<0的解集為________.4.(2022·上海閔行·高一期末)已知SKIPIF1<0、SKIPIF1<0,關(guān)于SKIPIF1<0的不等式SKIPIF1<0的解集為SKIPIF1<0,則SKIPIF1<0___________.5.(2022·上海·曹楊二中高一期末)已知a為常數(shù),若關(guān)于x的不等式SKIPIF1<0的解集為SKIPIF1<0,則SKIPIF1<0______.高頻考點四:一元二次不等式恒成立問題①SKIPIF1<0上恒成立二次型+SKIPIF1<0(范圍)優(yōu)選SKIPIF1<0法(注意最高項系數(shù)含參數(shù),從0開始討論)1.(2022·福建寧德·高一期末)SKIPIF1<0不等式SKIPIF1<0恒成立,則SKIPIF1<0的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0或SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<02.(2022·全國·高三專題練習)已知SKIPIF1<0,“SKIPIF1<0對SKIPIF1<0恒成立”的一個充要條件是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.(2021·吉林·汪清縣汪清第四中學(xué)高一階段練習)若不等式SKIPIF1<0對任意SKIPIF1<0恒成立,則實數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0或SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<04.(2021·全國·高一課時練習)若不等式SKIPIF1<0對任意SKIPIF1<0均成立,則實數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<05.(2020·河北省尚義縣第一中學(xué)高一期中)若命題SKIPIF1<0為真命題,則實數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0或SKIPIF1<0②SKIPIF1<0上恒成立二次型+SKIPIF1<0(范圍)優(yōu)選SKIPIF1<0法(注意最高項系數(shù)含參數(shù),從0開始討論)1.(2022·河南·新蔡縣第一高級中學(xué)高二階段練習(文))如果“SKIPIF1<0,使SKIPIF1<0.”是真命題,那么實數(shù)a的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.(2020·寧夏·隆德縣中學(xué)高三階段練習(理))已知命題“SKIPIF1<0,SKIPIF1<0”是真命題,則實數(shù)SKIPIF1<0的取值范圍(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0)D.SKIPIF1<0SKIPIF1<03.(2022·江蘇南通·高一期末)若命題“SKIPIF1<0”是真命題,則實數(shù)SKIPIF1<0的取值范圍是(
)A.(﹣∞,1) B.(﹣∞,1] C.(1,+∞) D.[1,+∞)4.(2021·山西·朔州市平魯區(qū)李林中學(xué)高一階段練習)若命題“SKIPIF1<0”是真命題,則實數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<05.(2021·天津·耀華中學(xué)高一期中)若命題“SKIPIF1<0,使得不等式SKIPIF1<0”成立,則實數(shù)SKIPIF1<0的取值集合是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0③SKIPIF1<0上恒成立(優(yōu)選分離變量法)SKIPIF1<0SKIPIF1<01.(2022·海南·嘉積中學(xué)高一階段練習)對任意的SKIPIF1<0,SKIPIF1<0恒成立,則SKIPIF1<0的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.(2021·河北·石家莊市藁城區(qū)第一中學(xué)高三開學(xué)考試)若關(guān)于SKIPIF1<0的不等式SKIPIF1<0在SKIPIF1<0上恒成立,則實數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0SKIPIF1<0A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.(2021·福建·泉州市第六中學(xué)高一期中)已知關(guān)于SKIPIF1<0的不等式SKIPIF1<0對任意SKIPIF1<0恒成立,則有(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<04.(2021·黑龍江·雞西市第一中學(xué)校高一期中)已知函數(shù)SKIPIF1<0,若SKIPIF1<0在SKIPIF1<0上恒成立,則實數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<05.(2022·全國·高三專題練習)若對任意的SKIPIF1<0恒成立,則m的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<06.(2022·甘肅張掖·高一期末)設(shè)函數(shù)SKIPIF1<0.(1)若不等式SKIPIF1<0的解集是SKIPIF1<0,求不等式SKIPIF1<0的解集;(2)當SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上恒成立,求實數(shù)SKIPIF1<0的取值范圍.7.(2021·山東·棗莊市第三中學(xué)高一階段練習)已知函數(shù)SKIPIF1<0(a∈R).(1)若關(guān)于x的不等式SKIPIF1<0<0的解集為(1,b),求a和b的值;(2)若對任意x∈SKIPIF1<0,SKIPIF1<0恒成立,求實數(shù)a的取值范圍.④SKIPIF1<0上恒成立(優(yōu)選分離變量法)SKIPIF1<0SKIPIF1<01.(2021·河南信陽·高二期中(理))若關(guān)于SKIPIF1<0的不等式SKIPIF1<0在SKIPIF1<0有解,則SKIPIF1<0的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<02.(2021·安徽·池州市第一中學(xué)高一期中)若關(guān)于x的不等式SKIPIF1<0在SKIPIF1<0上有解則實數(shù)m的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.(2021·河南·高二期中(理))已知關(guān)于SKIPIF1<0的不等式SKIPIF1<0在SKIPIF1<0上有解,則實數(shù)SKIPIF1<0的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<04.(2021·山西·大同一中高一期中)若關(guān)于SKIPIF1<0的不等式SKIPIF1<0在SKIPIF1<0內(nèi)有解,則實數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<05.(2021·河北·石家莊市第四十四中學(xué)高一期中)若關(guān)于x的不等式SKIPIF1<0在區(qū)間SKIPIF1<0上有解,則實數(shù)m的取值范圍是__________.6.(2021·福建省龍巖第一中學(xué)高一期中)已知不等式SKIPIF1<0有解,則實數(shù)SKIPIF1<0的取值范圍為__________.7.(2021·河北·石家莊市藁城區(qū)第一中學(xué)高一階段練習)已知函數(shù)SKIPIF1<0;(1)若關(guān)于SKIPIF1<0的不等式SKIPIF1<0的解集為SKIPIF1<0,求實數(shù)SKIPIF1<0的值;(2)存在SKIPIF1<0使得SKIPIF1<0成立,求實數(shù)SKIPIF1<0的取值范圍.⑤已知參數(shù)SKIPIF1<0,求SKIPIF1<0取值范圍(變更主元法)1.(2022·全國·高三專題練習)已知SKIPIF1<0,SKIPIF1<0,不等式SKIPIF1<0恒成立,則SKIPIF1<0的取值范圍為SKIPIF1<0SKIPIF1<0A.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0 B.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0C.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0 D.SKIPIF1<02.(2022·全國·高三專題練習)不等式SKIPIF1<0對一切SKIPIF1<0恒成立,則實數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<03.(2021·全國·高一課時練習)對任意的SKIPIF1<0,函數(shù)SKIPIF1<0的值總大于0,則SKIPIF1<0的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<04.(2021·江西吉安·高一期中)若不等式SKIPIF1<0對任意SKIPIF1<0成立,則SKIPIF1<0的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0高頻考點五:一元二次不等式的應(yīng)用1.(2021·全國·高一課時練習)某文具店購進一批新型臺燈,每盞的最低售價為15元,若每盞按最低售價銷售,每天能賣出45盞,每盞售價每提高1元,日銷售量將減少3盞,為了使這批臺燈每天獲得600元以上的銷售收入,則這批臺燈的銷售單價x(單位:元)的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.(2021·河北·石家莊一中高一階段練習)某城市對一種每件售價為160元的商品征收附加稅,稅率為SKIPIF1<0(即每銷售100元征稅SKIPIF1<0元),若年銷售量為SKIPIF1<0萬件,要使附加稅不少于128萬元,則SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.(2021·全國·高一專題練習)某文具店購進一批新型臺燈,若按每盞臺燈15元的價格銷售,每天能賣出30盞;若售價每提高1元,日銷售量將減少2盞,現(xiàn)決定提價銷售,為了使這批臺燈每天獲得400元以上(不含400元)的銷售收入.則這批臺燈的銷售單價SKIPIF1<0(單位:元)的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<04.(2021·全國·高一課時練習)一服裝廠生產(chǎn)某種風衣,日產(chǎn)量為SKIPIF1<0件時,售價為SKIPIF1<0元/件,每天的總成本為SKIPIF1<0元,且SKIPIF1<0,SKIPIF1<0,要使獲得的日利潤不少于1300元,則SKIPIF1<0的取值范圍為A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<05.(2021·全國·高一專題練習)某小型服裝廠生產(chǎn)一種風衣,日銷售量SKIPIF1<0(件)與單價SKIPIF1<0(元)之間的關(guān)系為SKIPIF1<0,生產(chǎn)SKIPIF1<0件所需成本為SKIPIF1<0(元),其中SKIPIF1<0元,若要求每天獲利不少于1300元,則日銷售量SKIPIF1<0的取值范圍是(
).A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0第五部分:高考真題感悟第五部分:高考真題感悟1.(2020·山東·高考真題)已知二次函數(shù)SKIPIF1<0的圖像如圖所示,則不等式SKIPIF1<0的解集是(
)SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.(2019·全國·高考真題(理))設(shè)集合A={x|x2-5x+6>0},B={x|x-1<0},則A∩B=A.(-∞,1) B.(-2,1)C.(-3,-1) D.(3,+∞)3.(2017·天津·高考真題(理))已知函數(shù)SKIPIF1<0設(shè)SKIPIF1<0,若關(guān)于x的不等式SKIPIF1<0在R上恒成立,則a的取值范圍是A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<04.(2019·天津·高考真題(文))設(shè)SKIPIF1<0,使不等式SKIPIF1<0成立的SKIPIF1<0的取值范圍為__________.5.(2018·天津·高考真題(文))已知SKIPIF1<0,函數(shù)SKIPIF1<0若對任意x∈[–3,+SKIPIF1<0),f(x)≤SKIPIF1<0恒成立,則a的取值范圍是__________.第六部分:第六部分:第04講一元二次函數(shù)(方程,不等式)(精練)一、單選題1.(2022·河南濮陽·高二開學(xué)考試(理))若不等式SKIPIF1<0的解集為SKIPIF1<0,則SKIPIF1<0的值分別為(
)A.SKIPIF1<0,SKIPIF1<0 B.SKIPIF1<0,SKIPIF1<0 C.SKIPIF1<0,SKIPIF1<0 D.SKIPIF1<0,SKIPIF1<02.(2022·江蘇南通·高三階段練習)當SKIPIF1<0時,不等式SKIPIF1<0恒成立,則實數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<03.(2022·吉林·農(nóng)安縣教師進修學(xué)校高一期末)不等式SKIPIF1<0對一切SKIPIF1<0恒成立,則實數(shù)a的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<04.(2022·河南焦作·高二期末(理))若存在SKIPIF1<0,使得不等式SKIPIF1<0成立,則實數(shù)k的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<05.(2022·河南·高一階段練習)已知關(guān)于SKIPIF1<0的不等式SKIPIF1<0的解集為SKIPIF1<0,則下列結(jié)論錯誤的是(
)A.SKIPIF1<0 B.a(chǎn)b的最大值為SKIPIF1<0C.SKIPIF1<0的最小值為4 D.SKIPIF1<0的最小值為SKIPIF1<06.(2022·浙江·安吉縣高級中學(xué)高一開學(xué)考試)已知關(guān)于SKIPIF1<0的不等式SKIPIF1<0的解集為SKIPIF1<0或SKIPIF1<0,則下列說法正確的是(
)A.SKIPIF1<0 B.不等式SKIPIF1<0的解集為SKIPIF1<0C.SKIPIF1<0 D.不等式SKIPIF1<0的解集為SKIPIF1<07.(2022·江蘇南京·高一期末)已知SKIPIF1<0
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 陜西省安康市2024-2025學(xué)年八年級(上)期末語文試卷
- 2025年全球及中國氯雷他定片行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025-2030全球工商用管道除濕機行業(yè)調(diào)研及趨勢分析報告
- 2025年全球及中國劃線輪(描線輪)行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025-2030全球PTFE化學(xué)鍍鎳行業(yè)調(diào)研及趨勢分析報告
- 2025年全球及中國汽車超高頻天線行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025年全球及中國多托盤貨叉行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025-2030全球汽車行業(yè)用生物基聚酰胺行業(yè)調(diào)研及趨勢分析報告
- 2025年全球及中國樹木介紹牌行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025-2030全球醫(yī)美用A型肉毒毒素行業(yè)調(diào)研及趨勢分析報告
- 2025-2030年中國納米氧化鋁行業(yè)發(fā)展前景與投資戰(zhàn)略研究報告新版
- 2025年度正規(guī)離婚協(xié)議書電子版下載服務(wù)
- 2025年貴州蔬菜集團有限公司招聘筆試參考題庫含答案解析
- 煤礦安全生產(chǎn)方針及法律法規(guī)課件
- 2025年教科室工作計劃樣本(四篇)
- 2024年版古董古玩買賣合同:古玩交易稅費及支付規(guī)定
- 【7歷期末】安徽省宣城市2023-2024學(xué)年七年級上學(xué)期期末考試歷史試題
- 春節(jié)后安全生產(chǎn)開工第一課
- 2025光伏組件清洗合同
- 電力電纜工程施工組織設(shè)計
- 2024年網(wǎng)格員考試題庫完美版
評論
0/150
提交評論