新高考數(shù)學(xué)一輪復(fù)習(xí) 專項(xiàng)分層精練第06課 奇偶性、對稱性與周期性(解析版)_第1頁
新高考數(shù)學(xué)一輪復(fù)習(xí) 專項(xiàng)分層精練第06課 奇偶性、對稱性與周期性(解析版)_第2頁
新高考數(shù)學(xué)一輪復(fù)習(xí) 專項(xiàng)分層精練第06課 奇偶性、對稱性與周期性(解析版)_第3頁
新高考數(shù)學(xué)一輪復(fù)習(xí) 專項(xiàng)分層精練第06課 奇偶性、對稱性與周期性(解析版)_第4頁
新高考數(shù)學(xué)一輪復(fù)習(xí) 專項(xiàng)分層精練第06課 奇偶性、對稱性與周期性(解析版)_第5頁
已閱讀5頁,還剩28頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

第03課奇偶性、對稱性與周期性(分層專項(xiàng)精練)【一層練基礎(chǔ)】一、單選題1.(2022秋·甘肅武威·高三武威第六中學(xué)??茧A段練習(xí))下列函數(shù)中,既是偶函數(shù)又在SKIPIF1<0上單調(diào)遞增的是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<02.(2021·全國·高三專題練習(xí))若函數(shù)SKIPIF1<0為奇函數(shù),則實(shí)數(shù)SKIPIF1<0的值為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.(2022秋·高一單元測試)函數(shù)SKIPIF1<0在SKIPIF1<0單調(diào)遞減,且為奇函數(shù).若SKIPIF1<0,則滿足SKIPIF1<0的SKIPIF1<0的取值范圍是(

)A.[-2,2] B.[-1,2] C.[0,4] D.[1,3]4.(2022秋·廣東肇慶·高一德慶縣香山中學(xué)??计谥校┰O(shè)函數(shù)SKIPIF1<0是定義在實(shí)數(shù)集上的奇函數(shù),在區(qū)間SKIPIF1<0上是增函數(shù),且SKIPIF1<0,則有A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<05.(2022秋·福建泉州·高一石獅市第一中學(xué)??计谥校┮阎猄KIPIF1<0是定義在SKIPIF1<0,SKIPIF1<0上的偶函數(shù),且在SKIPIF1<0,SKIPIF1<0上為增函數(shù),則SKIPIF1<0的解集為SKIPIF1<0SKIPIF1<0A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<06.(2022秋·高一課時(shí)練習(xí))已知偶函數(shù)f(x)在區(qū)間SKIPIF1<0單調(diào)遞增,則滿足SKIPIF1<0的x取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<07.(2023春·江蘇蘇州·高二常熟中學(xué)??茧A段練習(xí))已知函數(shù)SKIPIF1<0為偶函數(shù),且函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,則關(guān)于x的不等式SKIPIF1<0的解集為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0二、多選題8.(2022·全國·高三專題練習(xí))函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,且SKIPIF1<0與SKIPIF1<0都為奇函數(shù),則下列說法正確的是(

)A.SKIPIF1<0是周期為SKIPIF1<0的周期函數(shù) B.SKIPIF1<0是周期為SKIPIF1<0的周期函數(shù)C.SKIPIF1<0為奇函數(shù) D.SKIPIF1<0為奇函數(shù)9.(2022春·江蘇鹽城·高一江蘇省響水中學(xué)校考開學(xué)考試)SKIPIF1<0是定義在SKIPIF1<0上周期為4的函數(shù),且SKIPIF1<0,則下列說法中正確的是(

)A.SKIPIF1<0SKIPIF1<0的值域?yàn)镾KIPIF1<0B.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0C.SKIPIF1<0圖象的對稱軸為直線SKIPIF1<0D.方程SKIPIF1<0恰有5個(gè)實(shí)數(shù)解10.(2023春·高一單元測試)已知定義在SKIPIF1<0上的函數(shù)SKIPIF1<0滿足條件SKIPIF1<0,且函數(shù)SKIPIF1<0為奇函數(shù),則(

)A.函數(shù)SKIPIF1<0是周期函數(shù) B.函數(shù)SKIPIF1<0的圖象關(guān)于點(diǎn)SKIPIF1<0對稱C.函數(shù)SKIPIF1<0為SKIPIF1<0上的偶函數(shù) D.函數(shù)SKIPIF1<0為SKIPIF1<0上的單調(diào)函數(shù)11.(2023春·安徽滁州·高一校考階段練習(xí))已知SKIPIF1<0是定義在R上的偶函數(shù),且對任意SKIPIF1<0,有SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則(

)A.SKIPIF1<0是以2為周期的周期函數(shù)B.點(diǎn)SKIPIF1<0是函數(shù)SKIPIF1<0的一個(gè)對稱中心C.SKIPIF1<0D.函數(shù)SKIPIF1<0有3個(gè)零點(diǎn)12.(2020·全國·高三專題練習(xí))定義在SKIPIF1<0上的奇函數(shù)SKIPIF1<0滿足SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,下列等式成立的是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<013.(2023·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0對SKIPIF1<0,都有SKIPIF1<0,SKIPIF1<0為奇函數(shù),且SKIPIF1<0時(shí),SKIPIF1<0,下列結(jié)論正確的是(

)A.函數(shù)SKIPIF1<0的圖像關(guān)于點(diǎn)SKIPIF1<0中心對稱B.SKIPIF1<0是周期為2的函數(shù)C.SKIPIF1<0D.SKIPIF1<0三、填空題14.(2023·全國·高三專題練習(xí))我們知道,函數(shù)SKIPIF1<0的圖象關(guān)于坐標(biāo)原點(diǎn)成中心對稱圖形的充要條件是函數(shù)SKIPIF1<0為奇函數(shù),有同學(xué)發(fā)現(xiàn)可以將其推廣為:函數(shù)SKIPIF1<0的圖象關(guān)于點(diǎn)SKIPIF1<0成中心對稱圖形的充要條件是函數(shù)SKIPIF1<0為奇函數(shù),則SKIPIF1<0的圖象的對稱中心為.15.(2022秋·江西宜春·高三江西省豐城中學(xué)??奸_學(xué)考試)寫出一個(gè)同時(shí)具有下列性質(zhì)①②③的函數(shù)SKIPIF1<0.①SKIPIF1<0是定義域?yàn)镾KIPIF1<0的奇函數(shù);②SKIPIF1<0;③SKIPIF1<0.16.(2020·全國·高三專題練習(xí))已知SKIPIF1<0,函數(shù)SKIPIF1<0為偶函數(shù),且在SKIPIF1<0上是減函數(shù),則關(guān)于SKIPIF1<0的不等式SKIPIF1<0的解集為.17.(2023·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0,則SKIPIF1<0.18.(2020秋·內(nèi)蒙古包頭·高一包頭市第六中學(xué)??计谥校┮阎瘮?shù)SKIPIF1<0的圖象關(guān)于點(diǎn)SKIPIF1<0對稱,則SKIPIF1<0.【二層練綜合】一、單選題1.(2023·全國·高三專題練習(xí))已知定義在R上的函數(shù)SKIPIF1<0滿足SKIPIF1<0,且SKIPIF1<0是奇函數(shù),則(

)A.SKIPIF1<0是偶函數(shù) B.SKIPIF1<0的圖象關(guān)于直線SKIPIF1<0對稱C.SKIPIF1<0是奇函數(shù) D.SKIPIF1<0的圖象關(guān)于點(diǎn)SKIPIF1<0對稱2.(2022·江西贛州·贛州市贛縣第三中學(xué)??寄M預(yù)測)已知定義在SKIPIF1<0的函數(shù)滿足SKIPIF1<0,SKIPIF1<0,則下列結(jié)論正確的是(

)A.SKIPIF1<0不是周期函數(shù)B.SKIPIF1<0是奇函數(shù)C.對任意SKIPIF1<0,恒有SKIPIF1<0為定值D.對任意SKIPIF1<0,有SKIPIF1<03.(2022秋·四川遂寧·高三校考階段練習(xí))若函數(shù)SKIPIF1<0為偶函數(shù),對任意的SKIPIF1<0,且SKIPIF1<0,都有SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<04.(2022秋·陜西安康·高三校考階段練習(xí))已知函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),對任意的SKIPIF1<0都有SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<05.(2023·四川廣安·四川省廣安友誼中學(xué)??寄M預(yù)測)已知定義在R上的奇函數(shù)SKIPIF1<0滿足SKIPIF1<0,且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則下列不等式正確的是A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<06.(2023·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0的定義域?yàn)镽,SKIPIF1<0,且SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,則關(guān)于SKIPIF1<0的不等式SKIPIF1<0的解集為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0二、多選題7.(2023·廣東梅州·大埔縣虎山中學(xué)校考模擬預(yù)測)已知函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.則下列結(jié)論正確的是(

).A.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0B.函數(shù)SKIPIF1<0有五個(gè)零點(diǎn)C.若關(guān)于SKIPIF1<0的方程SKIPIF1<0有解,則實(shí)數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0D.對SKIPIF1<0,SKIPIF1<0恒成立8.(2023·全國·高三專題練習(xí))關(guān)于函數(shù)SKIPIF1<0有以下四個(gè)選項(xiàng),正確的是(

)A.對任意的a,SKIPIF1<0都不是偶函數(shù) B.存在a,使SKIPIF1<0是奇函數(shù)C.存在a,使SKIPIF1<0 D.若SKIPIF1<0的圖像關(guān)于SKIPIF1<0對稱,則SKIPIF1<09.(2023春·甘肅張掖·高一高臺縣第一中學(xué)??茧A段練習(xí))已知函數(shù)SKIPIF1<0是定義在R上的奇函數(shù),SKIPIF1<0是偶函數(shù),當(dāng)SKIPIF1<0,則下列說法中正確的有(

)A.函數(shù)SKIPIF1<0關(guān)于直線SKIPIF1<0對稱B.4是函數(shù)SKIPIF1<0的周期C.SKIPIF1<0D.方程SKIPIF1<0恰有4不同的根10.(2023春·安徽·高二馬鞍山二中??茧A段練習(xí))已知函數(shù)SKIPIF1<0(SKIPIF1<0)是奇函數(shù),SKIPIF1<0且SKIPIF1<0,SKIPIF1<0是SKIPIF1<0的導(dǎo)函數(shù),則(

)A.SKIPIF1<0 B.SKIPIF1<0的一個(gè)周期是4 C.SKIPIF1<0是偶函數(shù)D.SKIPIF1<011.(2022春·湖南長沙·高二長郡中學(xué)??计谀┮阎x在R上的函數(shù)f(x)滿足f(x)=f(-x),f(x+1)=f(1-x),且當(dāng)x∈[0,1]時(shí),f(x)=-x2+2x,則下列結(jié)論正確的是(

)A.f(x)的圖象關(guān)于直線x=1對稱 B.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0C.當(dāng)SKIPIF1<0時(shí),f(x)單調(diào)遞增 D.SKIPIF1<012.(2023春·山東臨沂·高二校考階段練習(xí))已知函數(shù)SKIPIF1<0為SKIPIF1<0上的奇函數(shù),SKIPIF1<0為偶函數(shù),下列說法正確的有(

)A.SKIPIF1<0圖象關(guān)于直線SKIPIF1<0對稱 B.SKIPIF1<0C.SKIPIF1<0的最小正周期為4 D.對任意SKIPIF1<0都有SKIPIF1<0三、填空題13.(2023·全國·高三專題練習(xí))已知SKIPIF1<0為R上的奇函數(shù),且SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0的值為.14.(2022秋·山東菏澤·高一校考階段練習(xí))設(shè)奇函數(shù)f(x)在(0,+∞)上為增函數(shù),且f(1)=0,則不等式SKIPIF1<0<0的解集為.15.(2021秋·上海靜安·高三上海市第六十中學(xué)校考階段練習(xí))設(shè)SKIPIF1<0是定義在R上以2為周期的偶函數(shù),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則函數(shù)SKIPIF1<0在SKIPIF1<0上的解析式是16.(2022春·江西吉安·高二校聯(lián)考階段練習(xí))已知函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的偶函數(shù),若對于SKIPIF1<0,都有SKIPIF1<0,且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0的值為.17.(2022·高二課時(shí)練習(xí))已知函數(shù)SKIPIF1<0的圖象是以點(diǎn)SKIPIF1<0為中心的中心對稱圖形,SKIPIF1<0,曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線與曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線互相垂直,則SKIPIF1<0.18.(2023·貴州銅仁·統(tǒng)考模擬預(yù)測)關(guān)于函數(shù)SKIPIF1<0,有如下四個(gè)命題:①若SKIPIF1<0,則SKIPIF1<0的圖象關(guān)于點(diǎn)SKIPIF1<0對稱;②若SKIPIF1<0的圖象關(guān)于直線SKIPIF1<0對稱,則SKIPIF1<0;③當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0的極值為SKIPIF1<0;④當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0有兩個(gè)零點(diǎn).其中所有真命題的序號是.【三層練能力】一、單選題1.(2023·黑龍江哈爾濱·哈師大附中??寄M預(yù)測)函數(shù)SKIPIF1<0、SKIPIF1<0的定義域?yàn)镾KIPIF1<0,SKIPIF1<0的導(dǎo)函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.(2023·江西·統(tǒng)考模擬預(yù)測)已知函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,其導(dǎo)函數(shù)為SKIPIF1<0,若SKIPIF1<0為奇函數(shù),SKIPIF1<0為偶函數(shù),記SKIPIF1<0,且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則不等式SKIPIF1<0的解集為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.(2023·河南·校聯(lián)考模擬預(yù)測)已知SKIPIF1<0是定義在SKIPIF1<0上的函數(shù),且SKIPIF1<0為奇函數(shù),SKIPIF1<0為偶函數(shù),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則a,b,c的大小關(guān)系為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0二、多選題4.(2023春·陜西渭南·高一統(tǒng)考期末)已知函數(shù)SKIPIF1<0、SKIPIF1<0定義域均為SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0為偶函數(shù),若SKIPIF1<0,則下面一定成立的是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<05.(2023·廣東茂名·統(tǒng)考二模)已知定義在SKIPIF1<0上的函數(shù)SKIPIF1<0滿足SKIPIF1<0,函數(shù)SKIPIF1<0為奇函數(shù),且對SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),都有SKIPIF1<0.函數(shù)SKIPIF1<0與函數(shù)SKIPIF1<0的圖象交于點(diǎn)SKIPIF1<0,SKIPIF1<0,…,SKIPIF1<0,給出以下結(jié)論,其中正確的是(

)A.SKIPIF1<0 B.函數(shù)SKIPIF1<0為偶函數(shù)C.函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減 D.SKIPIF1<06.(2023·山西大同·統(tǒng)考模擬預(yù)測)定義在R上的函數(shù)SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則(

)A.SKIPIF1<0是函數(shù)SKIPIF1<0圖象的一條對稱軸B.2是SKIPIF1<0的一個(gè)周期C.函數(shù)SKIPIF1<0圖象的一個(gè)對稱中心為SKIPIF1<0D.若SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,則n的最小值為2【一層練基礎(chǔ)】參考答案1.C【分析】根據(jù)函數(shù)奇偶性和單調(diào)性的定義,對每個(gè)選項(xiàng)進(jìn)行逐一判斷,即可選擇.【詳解】對SKIPIF1<0:容易知SKIPIF1<0是偶函數(shù),且在SKIPIF1<0單調(diào)遞減,故錯(cuò)誤;對SKIPIF1<0:容易知SKIPIF1<0是偶函數(shù),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,其在SKIPIF1<0單調(diào)遞增,在SKIPIF1<0單調(diào)遞減,故錯(cuò)誤;對SKIPIF1<0:容易知SKIPIF1<0是偶函數(shù),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0是單調(diào)增函數(shù),故正確;對SKIPIF1<0:容易知SKIPIF1<0是奇函數(shù),故錯(cuò)誤;故選:C.2.B【分析】根據(jù)函數(shù)為奇函數(shù),求得當(dāng)SKIPIF1<0時(shí)SKIPIF1<0的解析式,與已知的解析式對應(yīng)即可得到結(jié)果.【詳解】SKIPIF1<0為奇函數(shù)

SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0

SKIPIF1<0又SKIPIF1<0時(shí),SKIPIF1<0

SKIPIF1<0本題正確選項(xiàng):SKIPIF1<0【點(diǎn)睛】本題考查利用函數(shù)奇偶性求解函數(shù)解析式的問題,屬于基礎(chǔ)題.3.D【分析】根據(jù)奇函數(shù)的性質(zhì),并根據(jù)函數(shù)的單調(diào)性求解即可.【詳解】由函數(shù)SKIPIF1<0為奇函數(shù),得SKIPIF1<0,不等式SKIPIF1<0即為SKIPIF1<0,又SKIPIF1<0在SKIPIF1<0單調(diào)遞減,∴得SKIPIF1<0,即SKIPIF1<0﹒故選:D.4.A【分析】由題意可得SKIPIF1<0,SKIPIF1<0,再利用函數(shù)在區(qū)間SKIPIF1<0上是增函數(shù)可得答案.【詳解】解:SKIPIF1<0SKIPIF1<0為奇函數(shù),SKIPIF1<0,又SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,且函數(shù)在區(qū)間SKIPIF1<0上是增函數(shù),SKIPIF1<0,SKIPIF1<0SKIPIF1<0,故選A.【點(diǎn)睛】本題考查利用函數(shù)的單調(diào)性、奇偶性比較函數(shù)值的大小,考查利用知識解決問題的能力.5.B【分析】由偶函數(shù)定義域的對稱性可求SKIPIF1<0,從而可得SKIPIF1<0在SKIPIF1<0,SKIPIF1<0上為增函數(shù),在SKIPIF1<0,SKIPIF1<0上為減函數(shù),距離對稱軸越遠(yuǎn),函數(shù)值越小,可求.【詳解】解:SKIPIF1<0是定義在SKIPIF1<0,SKIPIF1<0上的偶函數(shù),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0,SKIPIF1<0上為增函數(shù),SKIPIF1<0在SKIPIF1<0,SKIPIF1<0上為減函數(shù),距離對稱軸越遠(yuǎn),函數(shù)值越小,由SKIPIF1<0可得SKIPIF1<0,且SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0解得SKIPIF1<0,故不等式的解集為SKIPIF1<0.故選:SKIPIF1<0.【點(diǎn)睛】本題主要考查不等式的解法,利用函數(shù)的奇偶性和單調(diào)性之間的關(guān)系是解決本題的關(guān)鍵,綜合考查函數(shù)性質(zhì)的應(yīng)用.6.A【分析】由偶函數(shù)性質(zhì)得函數(shù)在SKIPIF1<0上的單調(diào)性,然后由單調(diào)性解不等式.【詳解】因?yàn)榕己瘮?shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,故SKIPIF1<0越靠近SKIPIF1<0軸,函數(shù)值越小,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,解得:SKIPIF1<0.故選:A.7.A【分析】利用函數(shù)的奇偶性和對稱性,得到函數(shù)的單調(diào)區(qū)間,利用單調(diào)性解函數(shù)不等式.【詳解】因?yàn)镾KIPIF1<0為偶函數(shù),所以SKIPIF1<0的圖像關(guān)于y軸對稱,則SKIPIF1<0的圖像關(guān)于直線SKIPIF1<0對稱.因?yàn)镾KIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減.因?yàn)镾KIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0.故選:A.8.BD【分析】AB選項(xiàng),利用周期函數(shù)的定義判斷;CD選項(xiàng),利用周期性結(jié)合SKIPIF1<0,SKIPIF1<0為奇函數(shù)判斷.【詳解】因?yàn)楹瘮?shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,且SKIPIF1<0與SKIPIF1<0都為奇函數(shù),所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,故B正確A錯(cuò)誤;因?yàn)镾KIPIF1<0,且SKIPIF1<0為奇函數(shù),所以SKIPIF1<0為奇函數(shù),故D正確;因?yàn)镾KIPIF1<0與SKIPIF1<0相差1,不是最小周期的整數(shù)倍,且SKIPIF1<0為奇函數(shù),所以SKIPIF1<0不為奇函數(shù),故C錯(cuò)誤.故選:BD.9.ABD【分析】畫出SKIPIF1<0的部分圖象結(jié)合圖形分析每一個(gè)選項(xiàng)即可.【詳解】根據(jù)周期性,畫出SKIPIF1<0的部分圖象如下圖所示,由圖可知,選項(xiàng)A,D正確,C不正確;根據(jù)周期為SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,故B正確.故選:ABD.10.ABC【解析】利用SKIPIF1<0可以判斷函數(shù)SKIPIF1<0的周期性,利用SKIPIF1<0為奇函數(shù)可以判斷函數(shù)SKIPIF1<0的對稱性和奇偶性,最后選出正確答案.【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,故A正確;因?yàn)楹瘮?shù)SKIPIF1<0為奇函數(shù),所以函數(shù)SKIPIF1<0圖像關(guān)于原點(diǎn)成中心對稱,所以B正確;又函數(shù)SKIPIF1<0為奇函數(shù),所以SKIPIF1<0,根據(jù)SKIPIF1<0,令SKIPIF1<0代SKIPIF1<0有SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0代SKIPIF1<0有SKIPIF1<0,即函數(shù)SKIPIF1<0為SKIPIF1<0上的偶函數(shù),C正確;因?yàn)楹瘮?shù)SKIPIF1<0為奇函數(shù),所以SKIPIF1<0,又函數(shù)SKIPIF1<0為SKIPIF1<0上的偶函數(shù),SKIPIF1<0,所以函數(shù)不單調(diào),D不正確.故選:ABC.【點(diǎn)睛】本題考查了函數(shù)的周期性和奇偶性以及對稱性,屬于基礎(chǔ)題.11.BD【分析】首先根據(jù)函數(shù)的對稱性求出SKIPIF1<0的周期和對稱中心,然后求得SKIPIF1<0.利用圖象法即可判斷D.【詳解】依題意,SKIPIF1<0為偶函數(shù),且SKIPIF1<0,有SKIPIF1<0,即SKIPIF1<0關(guān)于SKIPIF1<0對稱,則SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0是周期為4的周期函數(shù),故A錯(cuò)誤;因?yàn)镾KIPIF1<0的周期為4,SKIPIF1<0關(guān)于SKIPIF1<0對稱,所以SKIPIF1<0是函數(shù)SKIPIF1<0的一個(gè)對稱中心,故B正確;因?yàn)镾KIPIF1<0的周期為4,則SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,故C錯(cuò)誤;作函數(shù)SKIPIF1<0和SKIPIF1<0的圖象如下圖所示,由圖可知,兩個(gè)函數(shù)圖象有3個(gè)交點(diǎn),所以函數(shù)SKIPIF1<0有3個(gè)零點(diǎn),故D正確.故選:BD.12.ABC【解析】由已知可得SKIPIF1<0是周期為SKIPIF1<0的函數(shù),結(jié)合奇偶性和已知解析式,即可求出函數(shù)值,逐項(xiàng)驗(yàn)證即可.【詳解】由SKIPIF1<0知SKIPIF1<0的周期為6,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.故選:ABC.【點(diǎn)睛】本題考查函數(shù)的周期性、奇偶性求函數(shù)值,屬于基礎(chǔ)題.13.ACD【分析】根據(jù)SKIPIF1<0為奇函數(shù)得SKIPIF1<0,推出SKIPIF1<0,判斷A;結(jié)合SKIPIF1<0,推出SKIPIF1<0,判斷B;采用賦值法求得SKIPIF1<0,判斷C;利用函數(shù)的周期性結(jié)合題設(shè)判斷D.【詳解】由題意SKIPIF1<0為奇函數(shù)得SKIPIF1<0,即SKIPIF1<0,故SKIPIF1<0的圖像關(guān)于SKIPIF1<0中心對稱,故A正確;由SKIPIF1<0,SKIPIF1<0得SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0是周期為4的函數(shù),故B錯(cuò)誤;由SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0,故C正確;SKIPIF1<0時(shí),SKIPIF1<0,∵SKIPIF1<0的周期為4,∴SKIPIF1<0,故D正確,故選:SKIPIF1<014.SKIPIF1<0【分析】求解出SKIPIF1<0,利用定義法判斷出其為奇函數(shù),從而得到SKIPIF1<0的圖象的對稱中心.【詳解】因?yàn)镾KIPIF1<0,定義域?yàn)镽,且SKIPIF1<0,所以SKIPIF1<0為奇函數(shù),故SKIPIF1<0的圖象的對稱中心為SKIPIF1<0.故答案為:SKIPIF1<0.15.SKIPIF1<0(答案不唯一)【分析】根據(jù)滿足的條件寫出一個(gè)函數(shù)即可.【詳解】由條件①②③可知函數(shù)對稱軸為SKIPIF1<0,定義域?yàn)镽的奇函數(shù),可寫出滿足條件的函數(shù)SKIPIF1<0.故答案為:SKIPIF1<0(答案不唯一)16.SKIPIF1<0【分析】由函數(shù)SKIPIF1<0為偶函數(shù)可得SKIPIF1<0,即SKIPIF1<0結(jié)合單調(diào)性可知SKIPIF1<0,數(shù)形結(jié)合即可得到結(jié)果.【詳解】解:因?yàn)镾KIPIF1<0=SKIPIF1<0為偶函數(shù),所以,SKIPIF1<0,SKIPIF1<0,又因?yàn)镾KIPIF1<0在SKIPIF1<0上是減函數(shù),所以,SKIPIF1<0,由二次函數(shù)圖象可知:SKIPIF1<0的解集為SKIPIF1<0,SKIPIF1<0的圖象看成是SKIPIF1<0的圖象向右平移2個(gè)單位,得到,所以,SKIPIF1<0的解集為SKIPIF1<0故答案為SKIPIF1<0【點(diǎn)睛】本題考查二次函數(shù)的圖像與性質(zhì),考查函數(shù)的奇偶性與單調(diào)性,考查函數(shù)與方程思想,數(shù)形結(jié)合思想.17.4043【分析】根據(jù)題意,化簡得到SKIPIF1<0,結(jié)合倒序相加法求和,即可求解.【詳解】由題意,函數(shù)SKIPIF1<0,可得SKIPIF1<0SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0兩式相加,可得SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<0.18.1【分析】根據(jù)SKIPIF1<0化簡求解即可.【詳解】由已知函數(shù)圖象關(guān)于SKIPIF1<0對稱,得SKIPIF1<0,SKIPIF1<0,整理得SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),等式成立,即SKIPIF1<0.故答案為:1.【二層練綜合】參考答案1.C【分析】由周期函數(shù)的概念易知函數(shù)SKIPIF1<0的周期為2,根據(jù)圖象平移可得SKIPIF1<0的圖象關(guān)于點(diǎn)SKIPIF1<0對稱,進(jìn)而可得奇偶性.【詳解】由SKIPIF1<0可得2是函數(shù)SKIPIF1<0的周期,因?yàn)镾KIPIF1<0是奇函數(shù),所以函數(shù)SKIPIF1<0的圖象關(guān)于點(diǎn)SKIPIF1<0對稱,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0是奇函數(shù),故選:C.2.C【分析】利用已知兩個(gè)等式進(jìn)行變形,由此可推出函數(shù)SKIPIF1<0為周期是4的偶函數(shù),從而可判斷選項(xiàng)SKIPIF1<0,再利用周期性可得SKIPIF1<0的值,即可判斷SKIPIF1<0【詳解】SKIPIF1<0,∴SKIPIF1<0

SKIPIF1<0,∴SKIPIF1<0∴SKIPIF1<0,∴SKIPIF1<0∴SKIPIF1<0,∴SKIPIF1<0是周期為4的函數(shù)∴SKIPIF1<0,∴SKIPIF1<0為偶函數(shù)在SKIPIF1<0中,令SKIPIF1<0,有SKIPIF1<0故SKIPIF1<0是定值當(dāng)SKIPIF1<0時(shí),SKIPIF1<0即為SKIPIF1<0,故D不正確故選:C【點(diǎn)睛】本題考查了函數(shù)的周期性與對稱性綜合,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算能力,屬于中檔題3.A【分析】由題意可得函數(shù)SKIPIF1<0在SKIPIF1<0上遞減,且關(guān)于SKIPIF1<0對稱,則SKIPIF1<0,利用作差法比較SKIPIF1<0三者之間的大小關(guān)系,再根據(jù)函數(shù)的單調(diào)性即可得解.【詳解】解:由對SKIPIF1<0,且SKIPIF1<0,都有SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0上遞減,又函數(shù)SKIPIF1<0為偶函數(shù),所以函數(shù)SKIPIF1<0關(guān)于SKIPIF1<0對稱,所以SKIPIF1<0,又SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0.故選:A.4.A【分析】根據(jù)題意,對SKIPIF1<0變形可得SKIPIF1<0,則函數(shù)SKIPIF1<0是周期為SKIPIF1<0的周期函數(shù),據(jù)此可得SKIPIF1<0,SKIPIF1<0,結(jié)合函數(shù)的解析式以及奇偶性求出SKIPIF1<0與SKIPIF1<0的值,相加即可得答案.【詳解】根據(jù)題意,函數(shù)SKIPIF1<0滿足任意的SKIPIF1<0都有SKIPIF1<0,則SKIPIF1<0,則函數(shù)SKIPIF1<0是周期為SKIPIF1<0的周期函數(shù),SKIPIF1<0,SKIPIF1<0又由函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),則SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0;故SKIPIF1<0;故選A.【點(diǎn)睛】本題考查函數(shù)的奇偶性與周期性、對稱性的應(yīng)用,關(guān)鍵是求出函數(shù)的周期,屬于基礎(chǔ)題.5.C【分析】先通過已知條件推出函數(shù)的最小正周期SKIPIF1<0,然后利用函數(shù)SKIPIF1<0的性質(zhì)計(jì)算或估計(jì)SKIPIF1<0、SKIPIF1<0、SKIPIF1<0的值或范圍即可比較大小.【詳解】由SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0的周期SKIPIF1<0.又SKIPIF1<0,且有SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0.又SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,因?yàn)镾KIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0又SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.故選:C.【點(diǎn)睛】本題主要考查根據(jù)已知條件推導(dǎo)抽象函數(shù)的周期性并利用函數(shù)的奇偶性、周期性等性質(zhì),再結(jié)合函數(shù)在指定區(qū)間的解析式比較函數(shù)值的大小問題,試題綜合性強(qiáng)6.C【分析】由SKIPIF1<0可得函數(shù)SKIPIF1<0的圖象關(guān)于直線SKIPIF1<0對稱,進(jìn)而得到SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,數(shù)形結(jié)合將SKIPIF1<0轉(zhuǎn)化為SKIPIF1<0,解不等式即可.【詳解】因?yàn)镾KIPIF1<0,SKIPIF1<0,所以函數(shù)SKIPIF1<0的圖象關(guān)于直線SKIPIF1<0對稱,又SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,結(jié)合草圖可知:要使SKIPIF1<0,則SKIPIF1<0到SKIPIF1<0的距離小于SKIPIF1<0到SKIPIF1<0的距離,故不等式SKIPIF1<0等價(jià)于SKIPIF1<0,兩邊同時(shí)平方后整理得SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0.故選:C.7.AD【分析】根據(jù)函數(shù)SKIPIF1<0是奇函數(shù),求出SKIPIF1<0時(shí)的解析式,可判斷A;利用導(dǎo)數(shù)求出函數(shù)SKIPIF1<0在SKIPIF1<0上的單調(diào)區(qū)間及極值,再結(jié)合SKIPIF1<0是奇函數(shù),可作出函數(shù)SKIPIF1<0在SKIPIF1<0上的大致圖象,從而可逐項(xiàng)判斷B、C、D.【詳解】設(shè)SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,又函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),所以SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0故A正確.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,故當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0取得極小值SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,又SKIPIF1<0,故函數(shù)SKIPIF1<0在SKIPIF1<0僅有一個(gè)零點(diǎn)SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0沒有零點(diǎn),所以函數(shù)SKIPIF1<0在SKIPIF1<0上僅有一個(gè)零點(diǎn),函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),故函數(shù)SKIPIF1<0在SKIPIF1<0上僅有一個(gè)零點(diǎn)SKIPIF1<0,又SKIPIF1<0,故函數(shù)SKIPIF1<0是定義在SKIPIF1<0上有3個(gè)零點(diǎn).故B錯(cuò)誤.作出函數(shù)SKIPIF1<0的大致圖象,由圖可知若關(guān)于SKIPIF1<0的方程SKIPIF1<0有解,則實(shí)數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.故C錯(cuò)誤.由圖可知,對SKIPIF1<0,SKIPIF1<0故D正確.故選:AD.【點(diǎn)睛】本題主要考查利用函數(shù)奇偶性求函數(shù)解析式;利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性及最值;同時(shí)也考查函數(shù)的零點(diǎn),綜合性較強(qiáng).8.AD【分析】根據(jù)輔助角公式將函數(shù)SKIPIF1<0化簡,然后結(jié)合正弦型函數(shù)的性質(zhì),對選項(xiàng)逐一判斷即可.【詳解】因?yàn)镾KIPIF1<0,其中SKIPIF1<0,SKIPIF1<0,對于A,要使SKIPIF1<0為偶函數(shù),則SKIPIF1<0,且SKIPIF1<0,即對任意的a,SKIPIF1<0都不是偶函數(shù),故正確;對于B,要使SKIPIF1<0為奇函數(shù),則SKIPIF1<0,且SKIPIF1<0,即不存在a,使SKIPIF1<0是奇函數(shù),故正確;對于C,因?yàn)镾KIPIF1<0,故錯(cuò)誤;對于D,若SKIPIF1<0的圖像關(guān)于SKIPIF1<0對稱,則SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,故正確.故選:AD9.ABD【分析】根據(jù)奇偶性的定義,結(jié)合函數(shù)的對稱性,即可判斷A的正誤;根據(jù)題意,結(jié)合函數(shù)的周期性,可判斷B的正誤;根據(jù)函數(shù)的周期性,結(jié)合解析式,即可判斷C的正誤;分別作出SKIPIF1<0和SKIPIF1<0的圖象,即可判斷D的正誤,即可得答案.【詳解】對于A:因?yàn)镾KIPIF1<0是偶函數(shù),所以SKIPIF1<0,即SKIPIF1<0所以SKIPIF1<0關(guān)于SKIPIF1<0對稱,故A正確.對于B:因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,即周期SKIPIF1<0,故B正確對于C:SKIPIF1<0所以SKIPIF1<0,故C錯(cuò)誤;對于D:因?yàn)镾KIPIF1<0,且SKIPIF1<0關(guān)于直線SKIPIF1<0對稱,根據(jù)對稱性可以作出SKIPIF1<0上的圖象,又SKIPIF1<0,根據(jù)對稱性,可作出SKIPIF1<0上的圖象,又SKIPIF1<0的周期SKIPIF1<0,作出SKIPIF1<0圖象與SKIPIF1<0圖象,如下圖所示:所以SKIPIF1<0與SKIPIF1<0有4個(gè)交點(diǎn),故D正確.故選:ABD10.BC【分析】根據(jù)函數(shù)奇偶性與SKIPIF1<0可得SKIPIF1<0,根據(jù)導(dǎo)數(shù)的運(yùn)算可得SKIPIF1<0從而可判斷B項(xiàng),根據(jù)周期性與奇偶性可判斷A項(xiàng),根據(jù)奇偶性與導(dǎo)數(shù)運(yùn)算可得SKIPIF1<0,從而可判斷C項(xiàng),在SKIPIF1<0中,令SKIPIF1<0代入計(jì)算可判斷D項(xiàng).【詳解】因?yàn)楹瘮?shù)SKIPIF1<0是奇函數(shù),SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,即:SKIPIF1<0,故SKIPIF1<0的周期為4,所以SKIPIF1<0,故SKIPIF1<0的一個(gè)周期為4,故B項(xiàng)正確;SKIPIF1<0,故A項(xiàng)錯(cuò)誤;因?yàn)楹瘮?shù)SKIPIF1<0是奇函數(shù),所以SKIPIF1<0,所以SKIPIF1<0,即:SKIPIF1<0,所以SKIPIF1<0為偶函數(shù),故C項(xiàng)正確;因?yàn)镾KIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,可得SKIPIF1<0,解得:SKIPIF1<0,故D項(xiàng)錯(cuò)誤.故選:BC.11.ACD【分析】根據(jù)給定條件探討函數(shù)SKIPIF1<0的性質(zhì),再逐一分析各個(gè)選項(xiàng)判斷作答.【詳解】因SKIPIF1<0,則有函數(shù)SKIPIF1<0圖象關(guān)于SKIPIF1<0對稱,A正確;由SKIPIF1<0得SKIPIF1<0,又R上的函數(shù)SKIPIF1<0滿足SKIPIF1<0,因此有SKIPIF1<0,于是得函數(shù)SKIPIF1<0是周期為2的周期函數(shù),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0,B不正確;因當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,因此SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,C正確;因函數(shù)SKIPIF1<0是周期為2的周期函數(shù),則SKIPIF1<0,D正確.故選:ACD12.ABD【分析】由奇偶性知SKIPIF1<0的對稱中心為SKIPIF1<0、對稱軸為SKIPIF1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論