2025屆山西省呂梁市泰化中學高考仿真卷數(shù)學試卷含解析_第1頁
2025屆山西省呂梁市泰化中學高考仿真卷數(shù)學試卷含解析_第2頁
2025屆山西省呂梁市泰化中學高考仿真卷數(shù)學試卷含解析_第3頁
2025屆山西省呂梁市泰化中學高考仿真卷數(shù)學試卷含解析_第4頁
2025屆山西省呂梁市泰化中學高考仿真卷數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2025屆山西省呂梁市泰化中學高考仿真卷數(shù)學試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.“”是“,”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件2.已知數(shù)列中,,(),則等于()A. B. C. D.23.已知向量,,則向量與的夾角為()A. B. C. D.4.若數(shù)列滿足且,則使的的值為()A. B. C. D.5.過雙曲線左焦點的直線交的左支于兩點,直線(是坐標原點)交的右支于點,若,且,則的離心率是()A. B. C. D.6.如圖,在中,點為線段上靠近點的三等分點,點為線段上靠近點的三等分點,則()A. B. C. D.7.集合中含有的元素個數(shù)為()A.4 B.6 C.8 D.128.已知函數(shù)是偶函數(shù),當時,函數(shù)單調(diào)遞減,設,,,則的大小關系為()A. B. C. D.9.某幾何體的三視圖如圖所示,則該幾何體的體積為()A. B.3 C. D.410.已知集合,,則為()A. B. C. D.11.某幾何體的三視圖如圖所示,圖中圓的半徑為1,等腰三角形的腰長為3,則該幾何體表面積為()A. B. C. D.12.我國古代有著輝煌的數(shù)學研究成果,其中的《周髀算經(jīng)》、《九章算術》、《海島算經(jīng)》、《孫子算經(jīng)》、《緝古算經(jīng)》,有豐富多彩的內(nèi)容,是了解我國古代數(shù)學的重要文獻.這5部專著中有3部產(chǎn)生于漢、魏、晉、南北朝時期.某中學擬從這5部專著中選擇2部作為“數(shù)學文化”校本課程學習內(nèi)容,則所選2部專著中至少有一部是漢、魏、晉、南北朝時期專著的概率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若,則=____,=___.14.已知函數(shù)為奇函數(shù),則______.15.已知,橢圓的方程為,雙曲線方程為,與的離心率之積為,則的漸近線方程為________.16.在區(qū)間內(nèi)任意取一個數(shù),則恰好為非負數(shù)的概率是________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列滿足:對任意,都有.(1)若,求的值;(2)若是等比數(shù)列,求的通項公式;(3)設,,求證:若成等差數(shù)列,則也成等差數(shù)列.18.(12分)為迎接2022年冬奧會,北京市組織中學生開展冰雪運動的培訓活動,并在培訓結束后對學生進行了考核.記表示學生的考核成績,并規(guī)定為考核優(yōu)秀.為了了解本次培訓活動的效果,在參加培訓的學生中隨機抽取了30名學生的考核成績,并作成如下莖葉圖:(Ⅰ)從參加培訓的學生中隨機選取1人,請根據(jù)圖中數(shù)據(jù),估計這名學生考核優(yōu)秀的概率;(Ⅱ)從圖中考核成績滿足的學生中任取2人,求至少有一人考核優(yōu)秀的概率;(Ⅲ)記表示學生的考核成績在區(qū)間的概率,根據(jù)以往培訓數(shù)據(jù),規(guī)定當時培訓有效.請根據(jù)圖中數(shù)據(jù),判斷此次中學生冰雪培訓活動是否有效,并說明理由.19.(12分)已知,,求證:(1);(2).20.(12分)已知函數(shù),(1)若,求的單調(diào)區(qū)間和極值;(2)設,且有兩個極值點,,若,求的最小值.21.(12分)已知橢圓的左焦點坐標為,,分別是橢圓的左,右頂點,是橢圓上異于,的一點,且,所在直線斜率之積為.(1)求橢圓的方程;(2)過點作兩條直線,分別交橢圓于,兩點(異于點).當直線,的斜率之和為定值時,直線是否恒過定點?若是,求出定點坐標;若不是,請說明理.22.(10分)已知函數(shù).(1)若在上為單調(diào)函數(shù),求實數(shù)a的取值范圍:(2)若,記的兩個極值點為,,記的最大值與最小值分別為M,m,求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

先求出滿足的值,然后根據(jù)充分必要條件的定義判斷.【詳解】由得,即,,因此“”是“,”的必要不充分條件.故選:B.【點睛】本題考查充分必要條件,掌握充分必要條件的定義是解題基礎.解題時可根據(jù)條件與結論中參數(shù)的取值范圍進行判斷.2、A【解析】

分別代值計算可得,觀察可得數(shù)列是以3為周期的周期數(shù)列,問題得以解決.【詳解】解:∵,(),

,

,

,

…,

∴數(shù)列是以3為周期的周期數(shù)列,

,

,

故選:A.【點睛】本題考查數(shù)列的周期性和運用:求數(shù)列中的項,考查運算能力,屬于基礎題.3、C【解析】

求出,進而可求,即能求出向量夾角.【詳解】解:由題意知,.則所以,則向量與的夾角為.故選:C.【點睛】本題考查了向量的坐標運算,考查了數(shù)量積的坐標表示.求向量夾角時,通常代入公式進行計算.4、C【解析】因為,所以是等差數(shù)列,且公差,則,所以由題設可得,則,應選答案C.5、D【解析】

如圖,設雙曲線的右焦點為,連接并延長交右支于,連接,設,利用雙曲線的幾何性質(zhì)可以得到,,結合、可求離心率.【詳解】如圖,設雙曲線的右焦點為,連接,連接并延長交右支于.因為,故四邊形為平行四邊形,故.又雙曲線為中心對稱圖形,故.設,則,故,故.因為為直角三角形,故,解得.在中,有,所以.故選:D.【點睛】本題考查雙曲線離心率,注意利用雙曲線的對稱性(中心對稱、軸對稱)以及雙曲線的定義來構造關于的方程,本題屬于難題.6、B【解析】

,將,代入化簡即可.【詳解】.故選:B.【點睛】本題考查平面向量基本定理的應用,涉及到向量的線性運算、數(shù)乘運算,考查學生的運算能力,是一道中檔題.7、B【解析】解:因為集合中的元素表示的是被12整除的正整數(shù),那么可得為1,2,3,4,6,,12故選B8、A【解析】

根據(jù)圖象關于軸對稱可知關于對稱,從而得到在上單調(diào)遞增且;再根據(jù)自變量的大小關系得到函數(shù)值的大小關系.【詳解】為偶函數(shù)圖象關于軸對稱圖象關于對稱時,單調(diào)遞減時,單調(diào)遞增又且,即本題正確選項:【點睛】本題考查利用函數(shù)奇偶性、對稱性和單調(diào)性比較函數(shù)值的大小關系問題,關鍵是能夠通過奇偶性和對稱性得到函數(shù)的單調(diào)性,通過自變量的大小關系求得結果.9、C【解析】

首先把三視圖轉(zhuǎn)換為幾何體,該幾何體為由一個三棱柱體,切去一個三棱錐體,由柱體、椎體的體積公式進一步求出幾何體的體積.【詳解】解:根據(jù)幾何體的三視圖轉(zhuǎn)換為幾何體為:該幾何體為由一個三棱柱體,切去一個三棱錐體,如圖所示:故:.故選:C.【點睛】本題考查了由三視圖求幾何體的體積、需熟記柱體、椎體的體積公式,考查了空間想象能力,屬于基礎題.10、C【解析】

分別求解出集合的具體范圍,由集合的交集運算即可求得答案.【詳解】因為集合,,所以故選:C【點睛】本題考查對數(shù)函數(shù)的定義域求法、一元二次不等式的解法及集合的交集運算,考查基本運算能力.11、C【解析】

幾何體是由一個圓錐和半球組成,其中半球的半徑為1,圓錐的母線長為3,底面半徑為1,計算得到答案.【詳解】幾何體是由一個圓錐和半球組成,其中半球的半徑為1,圓錐的母線長為3,底面半徑為1,故幾何體的表面積為.故選:.【點睛】本題考查了根據(jù)三視圖求表面積,意在考查學生的計算能力和空間想象能力.12、D【解析】

利用列舉法,從這5部專著中選擇2部作為“數(shù)學文化”校本課程學習內(nèi)容,基本事件有10種情況,所選2部專著中至少有一部是漢、魏、晉、南北朝時期專著的基本事件有9種情況,由古典概型概率公式可得結果.【詳解】《周髀算經(jīng)》、《九章算術》、《海島算經(jīng)》、《孫子算經(jīng)》、《緝古算經(jīng)》,這5部專著中有3部產(chǎn)生于漢、魏、晉、南北朝時期.記這5部專著分別為,其中產(chǎn)生于漢、魏、晉、南北朝時期.從這5部專著中選擇2部作為“數(shù)學文化”校本課程學習內(nèi)容,基本事件有共10種情況,所選2部專著中至少有一部是漢、魏、晉、南北朝時期專著的基本事件有,共9種情況,所以所選2部專著中至少有一部是漢、魏、晉、南北朝時期專著的概率為.故選D.【點睛】本題主要考查古典概型概率公式的應用,屬于基礎題,利用古典概型概率公式求概率時,找準基本事件個數(shù)是解題的關鍵,基本亊件的探求方法有(1)枚舉法:適合給定的基本事件個數(shù)較少且易一一列舉出的;(2)樹狀圖法:適合于較為復雜的問題中的基本亊件的探求.在找基本事件個數(shù)時,一定要按順序逐個寫出:先,….,再,…..依次….…這樣才能避免多寫、漏寫現(xiàn)象的發(fā)生.二、填空題:本題共4小題,每小題5分,共20分。13、12821【解析】

令,求得的值.利用展開式的通項公式,求得的值.【詳解】令,得.展開式的通項公式為,當時,為,即.【點睛】本小題主要考查二項式展開式的通項公式,考查賦值法求解二項式系數(shù)有關問題,屬于基礎題.14、【解析】

利用奇函數(shù)的定義得出,結合對數(shù)的運算性質(zhì)可求得實數(shù)的值.【詳解】由于函數(shù)為奇函數(shù),則,即,,整理得,解得.當時,真數(shù),不合乎題意;當時,,解不等式,解得或,此時函數(shù)的定義域為,定義域關于原點對稱,合乎題意.綜上所述,.故答案為:.【點睛】本題考查利用函數(shù)的奇偶性求參數(shù),考查了函數(shù)奇偶性的定義和對數(shù)運算性質(zhì)的應用,考查計算能力,屬于中等題.15、【解析】

求出橢圓與雙曲線的離心率,根據(jù)離心率之積的關系,然后推出關系,即可求解雙曲線的漸近線方程.【詳解】,橢圓的方程為,的離心率為:,雙曲線方程為,的離心率:,與的離心率之積為,,,的漸近線方程為:,即.故答案為:【點睛】本題考查了橢圓、雙曲線的幾何性質(zhì),掌握橢圓、雙曲線的離心率公式,屬于基礎題.16、【解析】

先分析非負數(shù)對應的區(qū)間長度,然后根據(jù)幾何概型中的長度模型,即可求解出“恰好為非負數(shù)”的概率.【詳解】當是非負數(shù)時,,區(qū)間長度是,又因為對應的區(qū)間長度是,所以“恰好為非負數(shù)”的概率是.故答案為:.【點睛】本題考查幾何概型中的長度模型,難度較易.解答問題的關鍵是能判斷出目標事件對應的區(qū)間長度.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)3;(2);(3)見解析.【解析】

(1)依據(jù)下標的關系,有,,兩式相加,即可求出;(2)依據(jù)等比數(shù)列的通項公式知,求出首項和公比即可。利用關系式,列出方程,可以解出首項和公比;(3)利用等差數(shù)列的定義,即可證出?!驹斀狻浚?)因為對任意,都有,所以,,兩式相加,,解得;(2)設等比數(shù)列的首項為,公比為,因為對任意,都有,所以有,解得,又,即有,化簡得,,即,或,因為,化簡得,所以故。(3)因為對任意,都有,所以有,成等差數(shù)列,設公差為,,,,,由等差數(shù)列的定義知,也成等差數(shù)列?!军c睛】本題主要考查等差、等比數(shù)列的定義以及賦值法的應用,意在考查學生的邏輯推理,數(shù)學建模,綜合運用數(shù)列知識的能力。18、(Ⅰ)(Ⅱ)(Ⅲ)見解析【解析】

(Ⅰ)根據(jù)莖葉圖求出滿足條件的概率即可;(Ⅱ)結合圖表得到6人中有2個人考核為優(yōu),從而求出滿足條件的概率即可;(Ⅲ)求出滿足的成績有16個,求出滿足條件的概率即可.【詳解】解:(Ⅰ)設這名學生考核優(yōu)秀為事件,由莖葉圖中的數(shù)據(jù)可以知道,30名同學中,有7名同學考核優(yōu)秀,所以所求概率約為(Ⅱ)設從圖中考核成績滿足的學生中任取2人,至少有一人考核成績優(yōu)秀為事件,因為表中成績在的6人中有2個人考核為優(yōu),所以基本事件空間包含15個基本事件,事件包含9個基本事件,所以(Ⅲ)根據(jù)表格中的數(shù)據(jù),滿足的成績有16個,所以所以可以認為此次冰雪培訓活動有效.【點睛】本題考查了莖葉圖問題,考查概率求值以及轉(zhuǎn)化思想,是一道常規(guī)題.19、(1)見解析;(2)見解析.【解析】

(1)結合基本不等式可證明;(2)利用基本不等式得,即,同理得其他兩個式子,三式相加可證結論.【詳解】(1)∵,∴,當且僅當a=b=c等號成立,∴;(2)由基本不等式,∴,同理,,∴,當且僅當a=b=c等號成立∴.【點睛】本題考查不等式的證明,考查用基本不等式證明不等式成立.解題關鍵是發(fā)現(xiàn)基本不等式的形式,方法是綜合法.20、(1)增區(qū)間為,減區(qū)間為;極小值,無極大值;(2)【解析】

(1)求出f(x)的導數(shù),解不等式,即可得到函數(shù)的單調(diào)區(qū)間,進而得到函數(shù)的極值;(2)由題意可得,,求出的表達式,,求出h(t)的最小值即可.【詳解】(1)將代入中,得到,求導,得到,結合,當?shù)玫剑涸鰠^(qū)間為,當,得減區(qū)間為且在時有極小值,無極大值.(2)將解析式代入,得,求導得到,令,得到,,,,,,,,因為,所以設,令,則所以在單調(diào)遞減,又因為所以,所以或又因為,所以所以,所以的最小值為.【點睛】本題考查了函數(shù)的單調(diào)性、極值、最值問題,考查導數(shù)的應用以及函數(shù)的極值的意義,考查轉(zhuǎn)化思想與減元意識,是一道綜合題.21、(1)(2)直線過定點【解析】

(1),再由,解方程組即可;(2)設,,由,得,由直線MN的方程與橢圓方程聯(lián)立得到根與系數(shù)的關系,代入計算即可.【詳解】(1)由題意知:,又,且解得,,∴橢圓方程為,(2)當直線的斜率存在時,設其方程為,設,,由,得.則,(*)由,得,整理可得(*)代入得,整理可得,又,∴,即,∴直線過點當直線的斜率不存在時,設直線的方程為,,,其中,∴,由,得,所以∴當直線的斜率不存在時,直線也過定點綜上所述,直線過定點.【點睛】本題考查求橢圓的標準方程以及直線與橢圓位置關系中的定點問題,在處理直線與橢圓的位置關系的大題時,一

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論