




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
導(dǎo)數(shù)解答題核心考點(diǎn)考情統(tǒng)計(jì)考向預(yù)測備考策略切線方程,單調(diào)性,極值2023·北京卷T20可以預(yù)測2024年新高考命題方向?qū)⒗^續(xù)以幾何意義,導(dǎo)數(shù)綜合問題之單調(diào)性、極值最值、求解及證明問題為背景展開命題.導(dǎo)數(shù)大題難度較難,縱觀近幾年的新高考試題,主要極值最值、用導(dǎo)數(shù)研究函數(shù)單調(diào)性問題及參數(shù)范圍求解、不等式證明問題、零點(diǎn)及恒成立問題等知識點(diǎn),同時(shí)也是高考沖刺復(fù)習(xí)的重點(diǎn)復(fù)習(xí)內(nèi)容。切線方程,單調(diào)性,證明問題2022·北京卷T20切線方程,極值、單調(diào)性、最值2021·北京卷T91.(2023·北京卷T20)設(shè)函數(shù)SKIPIF1<0,曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程為SKIPIF1<0.(1)求SKIPIF1<0的值;(2)設(shè)函數(shù)SKIPIF1<0,求SKIPIF1<0的單調(diào)區(qū)間;(3)求SKIPIF1<0的極值點(diǎn)個(gè)數(shù).【解】(1)因?yàn)镾KIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0在SKIPIF1<0處的切線方程為SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0.(2)由(1)得SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0,不妨設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,易知SKIPIF1<0恒成立,所以令SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0;令SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0;所以SKIPIF1<0在SKIPIF1<0,SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0,SKIPIF1<0上單調(diào)遞增,即SKIPIF1<0的單調(diào)遞減區(qū)間為SKIPIF1<0和SKIPIF1<0,單調(diào)遞增區(qū)間為SKIPIF1<0和SKIPIF1<0.(3)由(1)得SKIPIF1<0,SKIPIF1<0,由(2)知SKIPIF1<0在SKIPIF1<0,SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0,SKIPIF1<0上單調(diào)遞增,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0所以SKIPIF1<0在SKIPIF1<0上存在唯一零點(diǎn),不妨設(shè)為SKIPIF1<0,則SKIPIF1<0,此時(shí),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0單調(diào)遞增;所以SKIPIF1<0在SKIPIF1<0上有一個(gè)極小值點(diǎn);當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,則SKIPIF1<0,故SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上存在唯一零點(diǎn),不妨設(shè)為SKIPIF1<0,則SKIPIF1<0,此時(shí),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0單調(diào)遞增;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0單調(diào)遞減;所以SKIPIF1<0在SKIPIF1<0上有一個(gè)極大值點(diǎn);當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,則SKIPIF1<0,故SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上存在唯一零點(diǎn),不妨設(shè)為SKIPIF1<0,則SKIPIF1<0,此時(shí),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0單調(diào)遞增;所以SKIPIF1<0在SKIPIF1<0上有一個(gè)極小值點(diǎn);當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0單調(diào)遞增,所以SKIPIF1<0在SKIPIF1<0上無極值點(diǎn);綜上:SKIPIF1<0在SKIPIF1<0和SKIPIF1<0上各有一個(gè)極小值點(diǎn),在SKIPIF1<0上有一個(gè)極大值點(diǎn),共有SKIPIF1<0個(gè)極值點(diǎn).2.(2022·北京卷T20)已知函數(shù)SKIPIF1<0.(1)求曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程;(2)設(shè)SKIPIF1<0,討論函數(shù)SKIPIF1<0在SKIPIF1<0上的單調(diào)性;(3)證明:對任意的SKIPIF1<0,有SKIPIF1<0.【解】(1)解:因?yàn)镾KIPIF1<0,所以SKIPIF1<0,即切點(diǎn)坐標(biāo)為SKIPIF1<0,又SKIPIF1<0,∴切線斜率SKIPIF1<0∴切線方程為:SKIPIF1<0(2)解:因?yàn)镾KIPIF1<0,
所以SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,∴SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,∴SKIPIF1<0∴SKIPIF1<0在SKIPIF1<0上恒成立,∴SKIPIF1<0在SKIPIF1<0上單調(diào)遞增.(3)解:原不等式等價(jià)于SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,即證SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,由(2)知SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,∴SKIPIF1<0,∴SKIPIF1<0∴SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,又因?yàn)镾KIPIF1<0,∴SKIPIF1<0,所以命題得證.3.(2021·北京卷T19)已知函數(shù)SKIPIF1<0.(1)若SKIPIF1<0,求曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程;(2)若SKIPIF1<0在SKIPIF1<0處取得極值,求SKIPIF1<0的單調(diào)區(qū)間,以及其最大值與最小值.【解】(1)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,此時(shí),曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程為SKIPIF1<0,即SKIPIF1<0;(2)因?yàn)镾KIPIF1<0,則SKIPIF1<0,由題意可得SKIPIF1<0,解得SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0,列表如下:SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0增極大值減極小值增所以,函數(shù)SKIPIF1<0的增區(qū)間為SKIPIF1<0、SKIPIF1<0,單調(diào)遞減區(qū)間為SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.所以,SKIPIF1<0,SKIPIF1<0.1.導(dǎo)函數(shù)與原函數(shù)的關(guān)系SKIPIF1<0單調(diào)遞增,SKIPIF1<0單調(diào)遞減2.極值極值的定義SKIPIF1<0在SKIPIF1<0處先↗后↘,SKIPIF1<0在SKIPIF1<0處取得極大值SKIPIF1<0在SKIPIF1<0處先↘后↗,SKIPIF1<0在SKIPIF1<0處取得極小值3.導(dǎo)數(shù)的幾何意義(1)函數(shù)在某點(diǎn)的導(dǎo)數(shù)即曲線在該點(diǎn)處的切線的斜率.(2)曲線在某點(diǎn)的切線與曲線過某點(diǎn)的切線不同.(3)切點(diǎn)既在切線上,又在曲線上.4.利用導(dǎo)數(shù)研究函數(shù)單調(diào)性的關(guān)鍵(1)在利用導(dǎo)數(shù)討論函數(shù)的單調(diào)區(qū)間時(shí),首先要確定函數(shù)的定義域.(2)單調(diào)區(qū)間的劃分要注意對導(dǎo)數(shù)等于零的點(diǎn)的確認(rèn).(3)已知函數(shù)單調(diào)性求參數(shù)范圍,要注意導(dǎo)數(shù)等于零的情況.5.由導(dǎo)函數(shù)的圖象判斷函數(shù)y=f(x)的極值,要抓住兩點(diǎn)(1)由y=f′(x)的圖象與x軸的交點(diǎn),可得函數(shù)y=f(x)的可能極值點(diǎn).(2)由y=f′(x)的圖象可以看出y=f′(x)的函數(shù)值的正負(fù),從而可得到函數(shù)y=f(x)的單調(diào)性,可得極值點(diǎn).6.求函數(shù)f(x)在[a,b]上的最大值和最小值的步驟(1)求函數(shù)在(a,b)內(nèi)的極值.(2)求函數(shù)在區(qū)間端點(diǎn)處的函數(shù)值f(a),f(b).(3)將函數(shù)f(x)的各極值與f(a),f(b)比較,其中最大的一個(gè)為最大值,最小的一個(gè)為最小值.7.兩招破解不等式的恒成立問題(1)a≥f(x)恒成立?a≥f(x)max;(2)a≤f(x)恒成立?a≤f(x)min.分離參數(shù)法第一步:將原不等式分離參數(shù),轉(zhuǎn)化為不含參數(shù)的函數(shù)的最值問題;第二步:利用導(dǎo)數(shù)求該函數(shù)的最值;第三步:根據(jù)要求得所求范圍.函數(shù)思想法第一步將不等式轉(zhuǎn)化為含待求參數(shù)的函數(shù)的最值問題;第二步:利用導(dǎo)數(shù)求該函數(shù)的極值;第三步:構(gòu)建不等式求解.8.常用函數(shù)不等式:①SKIPIF1<0,其加強(qiáng)不等式SKIPIF1<0;②SKIPIF1<0,其加強(qiáng)不等式SKIPIF1<0.③SKIPIF1<0,SKIPIF1<0,SKIPIF1<0放縮SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<09.利用導(dǎo)數(shù)證明不等式問題:(1)直接構(gòu)造函數(shù)法:證明不等式SKIPIF1<0(或SKIPIF1<0)轉(zhuǎn)化為證明SKIPIF1<0(或SKIPIF1<0),進(jìn)而構(gòu)造輔助函數(shù)SKIPIF1<0;(2)轉(zhuǎn)化為證不等式SKIPIF1<0(或SKIPIF1<0),進(jìn)而轉(zhuǎn)化為證明SKIPIF1<0(SKIPIF1<0),因此只需在所給區(qū)間內(nèi)判斷SKIPIF1<0的符號,從而得到函數(shù)SKIPIF1<0的單調(diào)性,并求出函數(shù)SKIPIF1<0的最小值即可.1.已知函數(shù)SKIPIF1<0.(1)求曲線SKIPIF1<0在SKIPIF1<0處的切線方程;(2)設(shè)SKIPIF1<0,求函數(shù)SKIPIF1<0的最小值;(3)若SKIPIF1<0,求實(shí)數(shù)SKIPIF1<0的值.【解】(1)SKIPIF1<0,則SKIPIF1<0,所以曲線SKIPIF1<0在SKIPIF1<0處的切線方程為SKIPIF1<0,即SKIPIF1<0;(2)SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0;(3)函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,由(2)得SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,又當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,此時(shí)SKIPIF1<0不恒成立,故SKIPIF1<0不符題意;當(dāng)SKIPIF1<0時(shí),若SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,由上可知函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0①,若SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,由上可知函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0②,由①②可得SKIPIF1<0,綜上所述,SKIPIF1<0.2.已知函數(shù)SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),求曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處切線的斜率;(2)當(dāng)SKIPIF1<0時(shí),討論SKIPIF1<0的單調(diào)性;(3)若集合SKIPIF1<0有且只有一個(gè)元素,求SKIPIF1<0的值.【解】(1)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0,得到SKIPIF1<0,所以曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處切線的斜率為SKIPIF1<0.(2)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,易知SKIPIF1<0的定義域?yàn)镾KIPIF1<0,又SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0所以SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0;單調(diào)遞減區(qū)間為SKIPIF1<0.(3)因?yàn)镾KIPIF1<0,所以SKIPIF1<0,易知SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的定義域?yàn)镾KIPIF1<0,所以SKIPIF1<0恒成立,故SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,又SKIPIF1<0,所以SKIPIF1<0不合題意,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的定義域?yàn)镾KIPIF1<0,此時(shí)SKIPIF1<0,所以SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0,故SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0,單調(diào)遞減區(qū)間為SKIPIF1<0,所以SKIPIF1<0.設(shè)SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0的單調(diào)遞減區(qū)間為SKIPIF1<0;單調(diào)遞增區(qū)間為SKIPIF1<0.所以SKIPIF1<0,所以集合SKIPIF1<0有且只有一個(gè)元素時(shí)SKIPIF1<0.3.已知函數(shù)SKIPIF1<0.(1)求SKIPIF1<0的圖象在點(diǎn)SKIPIF1<0處的切線方程;(2)討論SKIPIF1<0的單調(diào)區(qū)間;(3)若對任意SKIPIF1<0,都有SKIPIF1<0,求SKIPIF1<0的最大值.(參考數(shù)據(jù):SKIPIF1<0)【解】(1)SKIPIF1<0,SKIPIF1<0SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0SKIPIF1<0,故SKIPIF1<0的圖象在點(diǎn)SKIPIF1<0處的切線方程為SKIPIF1<0,即SKIPIF1<0.(2)SKIPIF1<0SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0時(shí),當(dāng)SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0單調(diào)遞增;當(dāng)SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0單調(diào)遞減;SKIPIF1<0時(shí),當(dāng)SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0單調(diào)遞增;當(dāng)SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0單調(diào)遞減;SKIPIF1<0時(shí),當(dāng)SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0在SKIPIF1<0單調(diào)遞減;SKIPIF1<0時(shí),當(dāng)SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0單調(diào)遞增;當(dāng)SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0單調(diào)遞減.綜上所述:當(dāng)SKIPIF1<0,SKIPIF1<0的單調(diào)增區(qū)間為SKIPIF1<0,單調(diào)減區(qū)間為SKIPIF1<0;當(dāng)SKIPIF1<0,SKIPIF1<0的單調(diào)減區(qū)間為SKIPIF1<0,單調(diào)增區(qū)間為SKIPIF1<0;當(dāng)SKIPIF1<0,SKIPIF1<0的單調(diào)減區(qū)間為SKIPIF1<0,沒有單調(diào)增區(qū)間;當(dāng)SKIPIF1<0,SKIPIF1<0的單調(diào)減區(qū)間為SKIPIF1<0,單調(diào)增區(qū)間為SKIPIF1<0.(3)若對任意SKIPIF1<0,都有SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上的最大值SKIPIF1<0;由(2)可知,當(dāng)SKIPIF1<0,SKIPIF1<0在SKIPIF1<0單調(diào)遞增,在SKIPIF1<0單調(diào)遞減,故SKIPIF1<0;令SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0單調(diào)遞增,又SKIPIF1<0,則SKIPIF1<0;故當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,也即當(dāng)SKIPIF1<0時(shí),對任意SKIPIF1<0,都有SKIPIF1<0.故SKIPIF1<0的最大值為SKIPIF1<0.4.已知函數(shù)SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),求曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程;(2)當(dāng)SKIPIF1<0時(shí),求SKIPIF1<0的極值;(3)當(dāng)SKIPIF1<0時(shí),判斷SKIPIF1<0零點(diǎn)個(gè)數(shù),并說明理由.【解】(1)當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程為SKIPIF1<0.(2)函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,且SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0恒成立,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,即SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,又SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0在SKIPIF1<0處取得極大值SKIPIF1<0,無極小值.(3)令SKIPIF1<0,即SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,所以判斷SKIPIF1<0的零點(diǎn)個(gè)數(shù),即判斷SKIPIF1<0的零點(diǎn)個(gè)數(shù),又SKIPIF1<0,SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)等號成立,所以當(dāng)SKIPIF1<0時(shí)SKIPIF1<0有一個(gè)零點(diǎn),即SKIPIF1<0有一個(gè)零點(diǎn),當(dāng)SKIPIF1<0時(shí)SKIPIF1<0無零點(diǎn),即SKIPIF1<0無零點(diǎn),綜上可得當(dāng)SKIPIF1<0時(shí)SKIPIF1<0有一個(gè)零點(diǎn),當(dāng)SKIPIF1<0時(shí)SKIPIF1<0無零點(diǎn).5.已知函數(shù)SKIPIF1<0.(1)求曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程;(2)求SKIPIF1<0在區(qū)間SKIPIF1<0上的最大值與最小值;(3)當(dāng)SKIPIF1<0時(shí),求證:SKIPIF1<0.【解】(1)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程為SKIPIF1<0;(2)SKIPIF1<0,SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在區(qū)間SKIPIF1<0上恒成立,SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,所以函數(shù)SKIPIF1<0的最小值為SKIPIF1<0,最大值為SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0在區(qū)間SKIPIF1<0小于0,函數(shù)SKIPIF1<0單調(diào)遞減,SKIPIF1<0在區(qū)間SKIPIF1<0大于0,函數(shù)SKIPIF1<0單調(diào)遞增,所以函數(shù)SKIPIF1<0的最小值為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,顯然SKIPIF1<0,所以函數(shù)SKIPIF1<0的最大值為SKIPIF1<0,綜上可知,當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0的最小值為SKIPIF1<0,最大值為SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0的最小值為SKIPIF1<0,最大值為SKIPIF1<0;(3)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,即證明不等式SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0單調(diào)遞增,并且SKIPIF1<0,SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0上存在唯一零點(diǎn)SKIPIF1<0,使SKIPIF1<0,即SKIPIF1<0,則在區(qū)間SKIPIF1<0,SKIPIF1<0,SKIPIF1<0單調(diào)遞減,在區(qū)間SKIPIF1<0,SKIPIF1<0,SKIPIF1<0單調(diào)遞增,所以SKIPIF1<0的最小值為SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0.6.設(shè)函數(shù)SKIPIF1<0,曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線斜率為1.(1)求a的值;(2)設(shè)函數(shù)SKIPIF1<0,求SKIPIF1<0的單調(diào)區(qū)間;(3)求證:SKIPIF1<0.【解】(1)由題意得SKIPIF1<0的定義域?yàn)镾KIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0.所以SKIPIF1<0,解得SKIPIF1<0.(2)因?yàn)镾KIPIF1<0,SKIPIF1<0的定義域?yàn)镾KIPIF1<0,SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0與SKIPIF1<0在區(qū)間SKIPIF1<0上的情況如下:xSKIPIF1<00SKIPIF1<0SKIPIF1<0-0+SKIPIF1<0遞減極小遞增所以SKIPIF1<0的單調(diào)遞減區(qū)間為SKIPIF1<0,單調(diào)遞增區(qū)間為SKIPIF1<0;(3)證明:由(2)得,在SKIPIF1<0時(shí),SKIPIF1<0取得最小值1,所以SKIPIF1<0恒成立,所以SKIPIF1<0在SKIPIF1<0為增函數(shù),又因?yàn)镾KIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,綜上,SKIPIF1<0.7.已知函數(shù)SKIPIF1<0.(1)求曲線SKIPIF1<0的斜率為1的切線方程;(2)證明:SKIPIF1<0;(3)設(shè)SKIPIF1<0,求SKIPIF1<0在區(qū)間SKIPIF1<0上的最大值和最小值.【解】(1)因?yàn)镾KIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0,則SKIPIF1<0,所以切點(diǎn)為SKIPIF1<0,切線的斜率SKIPIF1<0,所以切線方程為SKIPIF1<0,即SKIPIF1<0.(2)因?yàn)镾KIPIF1<0定義域?yàn)镾KIPIF1<0,且SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0在SKIPIF1<0處取得極小值即最小值,所以SKIPIF1<0,所以SKIPIF1<0.(3)因?yàn)镾KIPIF1<0,SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0時(shí)SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0使得SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,即當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0在SKIPIF1<0處取得極小值,在SKIPIF1<0處取得極大值,又SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,由(2)知,SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0.8.已知函數(shù)SKIPIF1<0;(1)當(dāng)SKIPIF1<0時(shí),求曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程;(2)若正數(shù)a使得SKIPIF1<0對SKIPIF1<0恒成立.求a的取值范圍;(3)設(shè)函數(shù)SKIPIF1<0,討論其在定義域內(nèi)的零點(diǎn)個(gè)數(shù).【解】(1)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0,所以函數(shù)在SKIPIF1<0處的切線方程是:SKIPIF1<0,即SKIPIF1<0.(2)令函數(shù)SKIPIF1<0,求導(dǎo)得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0對SKIPIF1<0恒成立,當(dāng)SKIPIF1<0時(shí),由SKIPIF1<0得:SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0上遞增,則SKIPIF1<0,因此SKIPIF1<0對SKIPIF1<0恒成立,當(dāng)SKIPIF1<0時(shí),由SKIPIF1<0得:SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上遞減,則對SKIPIF1<0,SKIPIF1<0,因此SKIPIF1<0對SKIPIF1<0恒成立,不符合題意,所以SKIPIF1<0的范圍是SKIPIF1<0.(3)依題意,SKIPIF1<0,SKIPIF1<0,求導(dǎo)得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0無零點(diǎn);當(dāng)SKIPIF1<0時(shí),則SKIPIF1<0,即函數(shù)SKIPIF1<0在SKIPIF1<0上遞減,因?yàn)镾KIPIF1<0,因此函數(shù)SKIPIF1<0在SKIPIF1<0上只有1個(gè)零點(diǎn);當(dāng)SKIPIF1<0時(shí),令SKIPIF1<0,解得:SKIPIF1<0,則當(dāng)SKIPIF1<0時(shí),SKIPIF1<0遞增,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0遞減,于是SKIPIF1<0,又SKIPIF1<0,于是函數(shù)SKIPIF1<0在SKIPIF1<0上有唯一零點(diǎn),SKIPIF1<0在SKIPIF1<0上只有1個(gè)零點(diǎn),所以當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0無零點(diǎn),當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0在SKIPIF1<0上有1個(gè)零點(diǎn).9.已知函數(shù)SKIPIF1<0(1)已知f(x)在點(diǎn)(1,f(1))處的切線方程為SKIPIF1<0,求實(shí)數(shù)a的值;(2)已知f(x)在定義域上是增函數(shù),求實(shí)數(shù)a的取值范圍.(3)已知SKIPIF1<0有兩個(gè)零點(diǎn)SKIPIF1<0,SKIPIF1<0,求實(shí)數(shù)a的取值范圍并證明SKIPIF1<0.【解】(1)因?yàn)镾KIPIF1<0,所以SKIPIF1<0.所以SKIPIF1<0,又f(x)在點(diǎn)(1,f(1))處的切線方程為SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0..(2)f(x)的定義域?yàn)椋?,+∞),因?yàn)閒(x)在定義域上為增函數(shù),所以SKIPIF1<0在(0,+∞)上恒成立.即SKIPIF1<0恒成立.SKIPIF1<0,即SKIPIF1<0,令SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0時(shí)SKIPIF1<0,SKIPIF1<0時(shí)SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0,即SKIPIF1<0.(3)SKIPIF1<0定義域?yàn)镾KIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0在(0,+∞)上單調(diào)遞減,不合題意.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0SKIPIF1<0在(0,SKIPIF1<0)上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0的最小值為SKIPIF1<0,函數(shù)SKIPIF1<0存在兩個(gè)零點(diǎn)的必要條件是SKIPIF1<0,即SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0在(1,SKIPIF1<0)上存在一個(gè)零點(diǎn)(SKIPIF1<0).當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0在(SKIPIF1<0,+∞)上存在一個(gè)零點(diǎn),綜上函數(shù)SKIPIF1<0有兩個(gè)零點(diǎn),實(shí)數(shù)a的取值范圍是SKIPIF1<0.不妨設(shè)兩個(gè)零點(diǎn)SKIPIF1<0由SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,要證SKIPIF1<0,只需證SKIPIF1<0,只需證SKIPIF1<0,由SKIPIF1<0,只需證SKIPIF1<0,只需證SKIPIF1<0,只需證SKIPIF1<0,令SKIPIF1<0,只需證SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,∴H(t)在(0,1)上單調(diào)遞增,∴SKIPIF1<0,即SKIPIF1<0成立,所以SKIPIF1<0成立.10.已知函數(shù)SKIPIF1<0,其中SKIPIF1<0.(1)若SKIPIF1<0是SKIPIF1<0的極值點(diǎn),求SKIPIF1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《藥品市場營銷學(xué)》課程標(biāo)準(zhǔn)
- 農(nóng)莊轉(zhuǎn)讓帳篷合同范本
- 化肥區(qū)域授權(quán)合同范本
- 上海電子營銷咨詢合同范例
- 余姚市房地產(chǎn)經(jīng)紀(jì)合同范本
- 接觸網(wǎng)中級工題庫與參考答案
- 化工總控工高級測試題及參考答案
- 道路交通安全模擬試題含參考答案
- 個(gè)人安全與社會責(zé)任心得體會
- 公司收購資產(chǎn)合同范本
- 噴涂設(shè)備點(diǎn)檢表
- GB/T 2831-2009光學(xué)零件的面形偏差
- 廣東省佛山市《綜合基礎(chǔ)知識》事業(yè)單位國考真題
- 02 第2章 城市與城市化-城市管理學(xué)
- 六年級上冊英語教案-Culture 2 Going Green 第二課時(shí) 廣東開心英語
- 警察叔叔是怎樣破案的演示文稿課件
- 2019石景山初三一模語文試題及答案
- 尿液有形成分形態(tài)學(xué)檢查與臨床意義課件
- 09式 新擒敵拳 教學(xué)教案 教學(xué)法 圖解
- CAD術(shù)語對照表
- 學(xué)術(shù)論文的寫作與規(guī)范課件
評論
0/150
提交評論