2025屆山東省泰安市長城中學(xué)高三第三次模擬考試數(shù)學(xué)試卷含解析_第1頁
2025屆山東省泰安市長城中學(xué)高三第三次模擬考試數(shù)學(xué)試卷含解析_第2頁
2025屆山東省泰安市長城中學(xué)高三第三次模擬考試數(shù)學(xué)試卷含解析_第3頁
2025屆山東省泰安市長城中學(xué)高三第三次模擬考試數(shù)學(xué)試卷含解析_第4頁
2025屆山東省泰安市長城中學(xué)高三第三次模擬考試數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2025屆山東省泰安市長城中學(xué)高三第三次模擬考試數(shù)學(xué)試卷注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若(是虛數(shù)單位),則的值為()A.3 B.5 C. D.2.已知雙曲線的左,右焦點(diǎn)分別為、,過的直線l交雙曲線的右支于點(diǎn)P,以雙曲線的實(shí)軸為直徑的圓與直線l相切,切點(diǎn)為H,若,則雙曲線C的離心率為()A. B. C. D.3.復(fù)數(shù),若復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點(diǎn)關(guān)于虛軸對稱,則等于()A. B. C. D.4.已知正方體的棱長為1,平面與此正方體相交.對于實(shí)數(shù),如果正方體的八個(gè)頂點(diǎn)中恰好有個(gè)點(diǎn)到平面的距離等于,那么下列結(jié)論中,一定正確的是A. B.C. D.5.已知實(shí)數(shù)x,y滿足,則的最小值等于()A. B. C. D.6.雙曲線C:(,)的離心率是3,焦點(diǎn)到漸近線的距離為,則雙曲線C的焦距為()A.3 B. C.6 D.7.已知,其中是虛數(shù)單位,則對應(yīng)的點(diǎn)的坐標(biāo)為()A. B. C. D.8.在天文學(xué)中,天體的明暗程度可以用星等或亮度來描述.兩顆星的星等與亮度滿足,其中星等為mk的星的亮度為Ek(k=1,2).已知太陽的星等是–26.7,天狼星的星等是–1.45,則太陽與天狼星的亮度的比值為()A.1010.1 B.10.1 C.lg10.1 D.10–10.19.盒子中有編號(hào)為1,2,3,4,5,6,7的7個(gè)相同的球,從中任取3個(gè)編號(hào)不同的球,則取的3個(gè)球的編號(hào)的中位數(shù)恰好為5的概率是()A. B. C. D.10.某工廠只生產(chǎn)口罩、抽紙和棉簽,如圖是該工廠年至年各產(chǎn)量的百分比堆積圖(例如:年該工廠口罩、抽紙、棉簽產(chǎn)量分別占、、),根據(jù)該圖,以下結(jié)論一定正確的是()A.年該工廠的棉簽產(chǎn)量最少B.這三年中每年抽紙的產(chǎn)量相差不明顯C.三年累計(jì)下來產(chǎn)量最多的是口罩D.口罩的產(chǎn)量逐年增加11.已知函數(shù),其中,若恒成立,則函數(shù)的單調(diào)遞增區(qū)間為()A. B.C. D.12.下列函數(shù)中,圖象關(guān)于軸對稱的為()A. B.,C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在疫情防控過程中,某醫(yī)院一次性收治患者127人.在醫(yī)護(hù)人員的精心治療下,第15天開始有患者治愈出院,并且恰有其中的1名患者治愈出院.如果從第16天開始,每天出院的人數(shù)是前一天出院人數(shù)的2倍,那么第19天治愈出院患者的人數(shù)為_______________,第_______________天該醫(yī)院本次收治的所有患者能全部治愈出院.14.(5分)有一道描述有關(guān)等差與等比數(shù)列的問題:有四個(gè)和尚在做法事之前按身高從低到高站成一列,已知前三個(gè)和尚的身高依次成等差數(shù)列,后三個(gè)和尚的身高依次成等比數(shù)列,且前三個(gè)和尚的身高之和為cm,中間兩個(gè)和尚的身高之和為cm,則最高的和尚的身高是____________cm.15.已知為等差數(shù)列,為其前n項(xiàng)和,若,,則_______.16.設(shè)函數(shù),當(dāng)時(shí),記最大值為,則的最小值為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)證明:函數(shù)在上存在唯一的零點(diǎn);(2)若函數(shù)在區(qū)間上的最小值為1,求的值.18.(12分)在平面直角坐標(biāo)系中,曲線C的參數(shù)方程為(為參數(shù)).以原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸,建立極坐標(biāo)系.(1)求曲線C的極坐標(biāo)方程;(2)直線(t為參數(shù))與曲線C交于A,B兩點(diǎn),求最大時(shí),直線l的直角坐標(biāo)方程.19.(12分)已知函數(shù)是減函數(shù).(1)試確定a的值;(2)已知數(shù)列,求證:.20.(12分)已知均為正實(shí)數(shù),函數(shù)的最小值為.證明:(1);(2).21.(12分)如圖,已知,分別是正方形邊,的中點(diǎn),與交于點(diǎn),,都垂直于平面,且,,是線段上一動(dòng)點(diǎn).(1)當(dāng)平面,求的值;(2)當(dāng)是中點(diǎn)時(shí),求四面體的體積.22.(10分)在直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系;曲線C1的普通方程為(x-1)2+y2=1,曲線C2的參數(shù)方程為(θ為參數(shù)).(Ⅰ)求曲線C1和C2的極坐標(biāo)方程:(Ⅱ)設(shè)射線θ=(ρ>0)分別與曲線C1和C2相交于A,B兩點(diǎn),求|AB|的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】

直接利用復(fù)數(shù)的模的求法的運(yùn)算法則求解即可.【詳解】(是虛數(shù)單位)可得解得本題正確選項(xiàng):【點(diǎn)睛】本題考查復(fù)數(shù)的模的運(yùn)算法則的應(yīng)用,復(fù)數(shù)的模的求法,考查計(jì)算能力.2、A【解析】

在中,由余弦定理,得到,再利用即可建立的方程.【詳解】由已知,,在中,由余弦定理,得,又,,所以,,故選:A.【點(diǎn)睛】本題考查雙曲線離心率的計(jì)算問題,處理雙曲線離心率問題的關(guān)鍵是建立三者間的關(guān)系,本題是一道中檔題.3、A【解析】

先通過復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點(diǎn)關(guān)于虛軸對稱,得到,再利用復(fù)數(shù)的除法求解.【詳解】因?yàn)閺?fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點(diǎn)關(guān)于虛軸對稱,且復(fù)數(shù),所以所以故選:A【點(diǎn)睛】本題主要考查復(fù)數(shù)的基本運(yùn)算和幾何意義,屬于基礎(chǔ)題.4、B【解析】

此題畫出正方體模型即可快速判斷m的取值.【詳解】如圖(1)恰好有3個(gè)點(diǎn)到平面的距離為;如圖(2)恰好有4個(gè)點(diǎn)到平面的距離為;如圖(3)恰好有6個(gè)點(diǎn)到平面的距離為.所以本題答案為B.【點(diǎn)睛】本題以空間幾何體為載體考查點(diǎn),面的位置關(guān)系,考查空間想象能力,考查了學(xué)生靈活應(yīng)用知識(shí)分析解決問題的能力和知識(shí)方法的遷移能力,屬于難題.5、D【解析】

設(shè),,去絕對值,根據(jù)余弦函數(shù)的性質(zhì)即可求出.【詳解】因?yàn)閷?shí)數(shù),滿足,設(shè),,,恒成立,,故則的最小值等于.故選:.【點(diǎn)睛】本題考查了橢圓的參數(shù)方程、三角函數(shù)的圖象和性質(zhì),考查了運(yùn)算能力和轉(zhuǎn)化能力,意在考查學(xué)生對這些知識(shí)的理解掌握水平.6、A【解析】

根據(jù)焦點(diǎn)到漸近線的距離,可得,然后根據(jù),可得結(jié)果.【詳解】由題可知:雙曲線的漸近線方程為取右焦點(diǎn),一條漸近線則點(diǎn)到的距離為,由所以,則又所以所以焦距為:故選:A【點(diǎn)睛】本題考查雙曲線漸近線方程,以及之間的關(guān)系,識(shí)記常用的結(jié)論:焦點(diǎn)到漸近線的距離為,屬基礎(chǔ)題.7、C【解析】

利用復(fù)數(shù)相等的條件求得,,則答案可求.【詳解】由,得,.對應(yīng)的點(diǎn)的坐標(biāo)為,,.故選:.【點(diǎn)睛】本題考查復(fù)數(shù)的代數(shù)表示法及其幾何意義,考查復(fù)數(shù)相等的條件,是基礎(chǔ)題.8、A【解析】

由題意得到關(guān)于的等式,結(jié)合對數(shù)的運(yùn)算法則可得亮度的比值.【詳解】兩顆星的星等與亮度滿足,令,.故選A.【點(diǎn)睛】本題以天文學(xué)問題為背景,考查考生的數(shù)學(xué)應(yīng)用意識(shí)?信息處理能力?閱讀理解能力以及指數(shù)對數(shù)運(yùn)算.9、B【解析】

由題意,取的3個(gè)球的編號(hào)的中位數(shù)恰好為5的情況有,所有的情況有種,由古典概型的概率公式即得解.【詳解】由題意,取的3個(gè)球的編號(hào)的中位數(shù)恰好為5的情況有,所有的情況有種由古典概型,取的3個(gè)球的編號(hào)的中位數(shù)恰好為5的概率為:故選:B【點(diǎn)睛】本題考查了排列組合在古典概型中的應(yīng)用,考查了學(xué)生綜合分析,概念理解,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.10、C【解析】

根據(jù)該廠每年產(chǎn)量未知可判斷A、B、D選項(xiàng)的正誤,根據(jù)每年口罩在該廠的產(chǎn)量中所占的比重最大可判斷C選項(xiàng)的正誤.綜合可得出結(jié)論.【詳解】由于該工廠年至年的產(chǎn)量未知,所以,從年至年棉簽產(chǎn)量、抽紙產(chǎn)量以及口罩產(chǎn)量的變化無法比較,故A、B、D選項(xiàng)錯(cuò)誤;由堆積圖可知,從年至年,該工廠生產(chǎn)的口罩占該工廠的總產(chǎn)量的比重是最大的,則三年累計(jì)下來產(chǎn)量最多的是口罩,C選項(xiàng)正確.故選:C.【點(diǎn)睛】本題考查堆積圖的應(yīng)用,考查數(shù)據(jù)處理能力,屬于基礎(chǔ)題.11、A【解析】

,從而可得,,再解不等式即可.【詳解】由已知,,所以,,由,解得,.故選:A.【點(diǎn)睛】本題考查求正弦型函數(shù)的單調(diào)區(qū)間,涉及到恒成立問題,考查學(xué)生轉(zhuǎn)化與化歸的思想,是一道中檔題.12、D【解析】

圖象關(guān)于軸對稱的函數(shù)為偶函數(shù),用偶函數(shù)的定義及性質(zhì)對選項(xiàng)進(jìn)行判斷可解.【詳解】圖象關(guān)于軸對稱的函數(shù)為偶函數(shù);A中,,,故為奇函數(shù);B中,的定義域?yàn)椋魂P(guān)于原點(diǎn)對稱,故為非奇非偶函數(shù);C中,由正弦函數(shù)性質(zhì)可知,為奇函數(shù);D中,且,,故為偶函數(shù).故選:D.【點(diǎn)睛】本題考查判斷函數(shù)奇偶性.判斷函數(shù)奇偶性的兩種方法:(1)定義法:對于函數(shù)的定義域內(nèi)任意一個(gè)都有,則函數(shù)是奇函數(shù);都有,則函數(shù)是偶函數(shù)(2)圖象法:函數(shù)是奇(偶)函數(shù)函數(shù)圖象關(guān)于原點(diǎn)(軸)對稱.二、填空題:本題共4小題,每小題5分,共20分。13、161【解析】

由題意可知出院人數(shù)構(gòu)成一個(gè)首項(xiàng)為1,公比為2的等比數(shù)列,由此可求結(jié)果.【詳解】某醫(yī)院一次性收治患者127人.第15天開始有患者治愈出院,并且恰有其中的1名患者治愈出院.且從第16天開始,每天出院的人數(shù)是前一天出院人數(shù)的2倍,從第15天開始,每天出院人數(shù)構(gòu)成以1為首項(xiàng),2為公比的等比數(shù)列,則第19天治愈出院患者的人數(shù)為,,解得,第天該醫(yī)院本次收治的所有患者能全部治愈出院.故答案為:16,1.【點(diǎn)睛】本題主要考查了等比數(shù)列在實(shí)際問題中的應(yīng)用,考查等比數(shù)列的性質(zhì)等基礎(chǔ)知識(shí),考查推理能力與計(jì)算能力,屬于中檔題.14、【解析】

依題意設(shè)前三個(gè)和尚的身高依次為,第四個(gè)(最高)和尚的身高為,則,解得,又,解得,又因?yàn)槌傻缺葦?shù)列,則公比,故.15、1【解析】試題分析:因?yàn)槭堑炔顢?shù)列,所以,即,又,所以,所以.故答案為1.【考點(diǎn)】等差數(shù)列的基本性質(zhì)【名師點(diǎn)睛】在等差數(shù)列五個(gè)基本量,,,,中,已知其中三個(gè)量,可以根據(jù)已知條件,結(jié)合等差數(shù)列的通項(xiàng)公式、前項(xiàng)和公式列出關(guān)于基本量的方程(組)來求余下的兩個(gè)量,計(jì)算時(shí)須注意整體代換思想及方程思想的應(yīng)用.16、【解析】

易知,設(shè),,利用絕對值不等式的性質(zhì)即可得解.【詳解】,設(shè),,令,當(dāng)時(shí),,所以單調(diào)遞減令,當(dāng)時(shí),,所以單調(diào)遞增所以當(dāng)時(shí),,,則則,即故答案為:.【點(diǎn)睛】本題考查函數(shù)最值的求法,考查絕對值不等式的性質(zhì),考查轉(zhuǎn)化思想及邏輯推理能力,屬于難題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)【解析】

(1)求解出導(dǎo)函數(shù),分析導(dǎo)函數(shù)的單調(diào)性,再結(jié)合零點(diǎn)的存在性定理說明在上存在唯一的零點(diǎn)即可;(2)根據(jù)導(dǎo)函數(shù)零點(diǎn),判斷出的單調(diào)性,從而可確定,利用以及的單調(diào)性,可確定出之間的關(guān)系,從而的值可求.【詳解】(1)證明:∵,∴.∵在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,∴函數(shù)在上單調(diào)遞增.又,令,,則在上單調(diào)遞減,,故.令,則所以函數(shù)在上存在唯一的零點(diǎn).(2)解:由(1)可知存在唯一的,使得,即(*).函數(shù)在上單調(diào)遞增.∴當(dāng)時(shí),,單調(diào)遞減;當(dāng)時(shí),,單調(diào)遞增.∴.由(*)式得.∴,顯然是方程的解.又∵是單調(diào)遞減函數(shù),方程有且僅有唯一的解,把代入(*)式,得,∴,即所求實(shí)數(shù)的值為.【點(diǎn)睛】本題考查函數(shù)與導(dǎo)數(shù)的綜合應(yīng)用,其中涉及到判斷函數(shù)在給定區(qū)間上的零點(diǎn)個(gè)數(shù)以及根據(jù)函數(shù)的最值求解參數(shù),難度較難.(1)判斷函數(shù)的零點(diǎn)個(gè)數(shù)時(shí),可結(jié)合函數(shù)的單調(diào)性以及零點(diǎn)的存在性定理進(jìn)行判斷;(2)函數(shù)的“隱零點(diǎn)”問題,可通過“設(shè)而不求”的思想進(jìn)行分析.18、(1);(2).【解析】

(1)利用消去參數(shù),得到曲線的普通方程,再將,代入普通方程,即可求出結(jié)論;(2)由(1)得曲線表示圓,直線曲線C交于A,B兩點(diǎn),最大值為圓的直徑,直線過圓心,即可求出直線的方程.【詳解】(1)由曲線C的參數(shù)方程(為參數(shù)),可得曲線C的普通方程為,因?yàn)?,所以曲線C的極坐標(biāo)方程為,即.(2)因?yàn)橹本€(t為參數(shù))表示的是過點(diǎn)的直線,曲線C的普通方程為,所以當(dāng)最大時(shí),直線l經(jīng)過圓心.直線l的斜率為,方程為,所以直線l的直角坐標(biāo)方程為.【點(diǎn)睛】本題考查參數(shù)方程與普通方程互化、直角坐標(biāo)方程與極坐標(biāo)方程互化、直線與曲線的位置關(guān)系,考查化歸和轉(zhuǎn)化思想,屬于中檔題.19、(Ⅰ)(Ⅱ)見證明【解析】

(Ⅰ)求導(dǎo)得,由是減函數(shù)得,對任意的,都有恒成立,構(gòu)造函數(shù),通過求導(dǎo)判斷它的單調(diào)性,令其最大值小于等于0,即可求出;(Ⅱ)由是減函數(shù),且可得,當(dāng)時(shí),,則,即,兩邊同除以得,,即,從而,兩邊取對數(shù),然后再證明恒成立即可,構(gòu)造函數(shù),,通過求導(dǎo)證明即可.【詳解】解:(Ⅰ)的定義域?yàn)椋?由是減函數(shù)得,對任意的,都有恒成立.設(shè).∵,由知,∴當(dāng)時(shí),;當(dāng)時(shí),,∴在上單調(diào)遞增,在上單調(diào)遞減,∴在時(shí)取得最大值.又∵,∴對任意的,恒成立,即的最大值為.∴,解得.(Ⅱ)由是減函數(shù),且可得,當(dāng)時(shí),,∴,即.兩邊同除以得,,即.從而,所以①.下面證;記,.∴,∵在上單調(diào)遞增,∴在上單調(diào)遞減,而,∴當(dāng)時(shí),恒成立,∴在上單調(diào)遞減,即時(shí),,∴當(dāng)時(shí),.∵,∴當(dāng)時(shí),,即②.綜上①②可得,.【點(diǎn)睛】本題考查了導(dǎo)數(shù)與函數(shù)的單調(diào)性的關(guān)系,考查了函數(shù)的最值,考查了構(gòu)造函數(shù)的能力,考查了邏輯推理能力與計(jì)算求解能力,屬于難題.,20、(1)證明見解析(2)證明見解析【解析】

(1)運(yùn)用絕對值不等式的性質(zhì),注意等號(hào)成立的條件,即可求得最小值,再運(yùn)用柯西不等式,即可得到最小值.(2)利用基本不等式即可得到結(jié)論

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論