




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
山東新2025屆高考仿真卷數(shù)學(xué)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)。回答非選擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知,,若,則向量在向量方向的投影為()A. B. C. D.2.已知等差數(shù)列的前項(xiàng)和為,若,,則數(shù)列的公差為()A. B. C. D.3.古希臘數(shù)學(xué)家畢達(dá)哥拉斯在公元前六世紀(jì)發(fā)現(xiàn)了第一、二個(gè)“完全數(shù)”6和28,進(jìn)一步研究發(fā)現(xiàn)后續(xù)三個(gè)“完全數(shù)”分別為496,8128,33550336,現(xiàn)將這五個(gè)“完全數(shù)”隨機(jī)分為兩組,一組2個(gè),另一組3個(gè),則6和28恰好在同一組的概率為A. B. C. D.4.已知函數(shù),關(guān)于的方程R)有四個(gè)相異的實(shí)數(shù)根,則的取值范圍是(
)A. B. C. D.5.已知復(fù)數(shù)滿足,則()A. B. C. D.6.已知集合,,且、都是全集(為實(shí)數(shù)集)的子集,則如圖所示韋恩圖中陰影部分所表示的集合為()A. B.或C. D.7.過雙曲線的左焦點(diǎn)作傾斜角為的直線,若與軸的交點(diǎn)坐標(biāo)為,則該雙曲線的標(biāo)準(zhǔn)方程可能為()A. B. C. D.8.如圖所示,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗線畫出的是某幾何體的三視圖,則該幾何體的體積是()A. B. C. D.89.已知全集U=x|x2≤4,x∈Z,A.-1 B.-1,0 C.-2,-1,0 D.-2,-1,0,1,210.設(shè),是兩條不同的直線,,是兩個(gè)不同的平面,下列命題中正確的是()A.若,,,則B.若,,,則C.若,,,則D.若,,,則11.“哥德巴赫猜想”是近代三大數(shù)學(xué)難題之一,其內(nèi)容是:一個(gè)大于2的偶數(shù)都可以寫成兩個(gè)質(zhì)數(shù)(素?cái)?shù))之和,也就是我們所謂的“1+1”問題.它是1742年由數(shù)學(xué)家哥德巴赫提出的,我國(guó)數(shù)學(xué)家潘承洞、王元、陳景潤(rùn)等在哥德巴赫猜想的證明中做出相當(dāng)好的成績(jī).若將6拆成兩個(gè)正整數(shù)的和,則拆成的和式中,加數(shù)全部為質(zhì)數(shù)的概率為()A. B. C. D.12.下列函數(shù)中,值域?yàn)榈呐己瘮?shù)是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若,則________.14.設(shè)函數(shù),當(dāng)時(shí),記最大值為,則的最小值為______.15.某學(xué)校高一、高二、高三年級(jí)的學(xué)生人數(shù)之比為,現(xiàn)按年級(jí)采用分層抽樣的方法抽取若干人,若抽取的高三年級(jí)為12人,則抽取的樣本容量為________人.16.已知點(diǎn)P是直線y=x+1上的動(dòng)點(diǎn),點(diǎn)Q是拋物線y=x2上的動(dòng)點(diǎn).設(shè)點(diǎn)M為線段PQ的中點(diǎn),O為原點(diǎn),則三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(1)若,試討論的單調(diào)性;(2)若,實(shí)數(shù)為方程的兩不等實(shí)根,求證:.18.(12分)已知橢圓,過的直線與橢圓相交于兩點(diǎn),且與軸相交于點(diǎn).(1)若,求直線的方程;(2)設(shè)關(guān)于軸的對(duì)稱點(diǎn)為,證明:直線過軸上的定點(diǎn).19.(12分)如圖,在四棱錐中,底面是直角梯形且∥,側(cè)面為等邊三角形,且平面平面.(1)求平面與平面所成的銳二面角的大??;(2)若,且直線與平面所成角為,求的值.20.(12分)在底面為菱形的四棱柱中,平面.(1)證明:平面;(2)求二面角的正弦值.21.(12分)已知數(shù)列中,,前項(xiàng)和為,若對(duì)任意的,均有(是常數(shù),且)成立,則稱數(shù)列為“數(shù)列”.(1)若數(shù)列為“數(shù)列”,求數(shù)列的前項(xiàng)和;(2)若數(shù)列為“數(shù)列”,且為整數(shù),試問:是否存在數(shù)列,使得對(duì)任意,成立?如果存在,求出這樣數(shù)列的的所有可能值,如果不存在,請(qǐng)說明理由.22.(10分)已知直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求直線的普通方程和曲線的直角坐標(biāo)方程;(2)設(shè)點(diǎn),直線與曲線交于,兩點(diǎn),求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
由,,,再由向量在向量方向的投影為化簡(jiǎn)運(yùn)算即可【詳解】∵∴,∴,∴向量在向量方向的投影為.故選:B.【點(diǎn)睛】本題考查向量投影的幾何意義,屬于基礎(chǔ)題2、D【解析】
根據(jù)等差數(shù)列公式直接計(jì)算得到答案.【詳解】依題意,,故,故,故,故選:D.【點(diǎn)睛】本題考查了等差數(shù)列的計(jì)算,意在考查學(xué)生的計(jì)算能力.3、B【解析】
推導(dǎo)出基本事件總數(shù),6和28恰好在同一組包含的基本事件個(gè)數(shù),由此能求出6和28恰好在同一組的概率.【詳解】解:將五個(gè)“完全數(shù)”6,28,496,8128,33550336,隨機(jī)分為兩組,一組2個(gè),另一組3個(gè),基本事件總數(shù),6和28恰好在同一組包含的基本事件個(gè)數(shù),∴6和28恰好在同一組的概率.故選:B.【點(diǎn)睛】本題考查概率的求法,考查古典概型、排列組合等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是基礎(chǔ)題.4、A【解析】=,當(dāng)時(shí)時(shí),單調(diào)遞減,時(shí),單調(diào)遞增,且當(dāng),當(dāng),
當(dāng)時(shí),恒成立,時(shí),單調(diào)遞增且,方程R)有四個(gè)相異的實(shí)數(shù)根.令=則,,即.5、A【解析】
由復(fù)數(shù)的運(yùn)算法則計(jì)算.【詳解】因?yàn)?,所以故選:A.【點(diǎn)睛】本題考查復(fù)數(shù)的運(yùn)算.屬于簡(jiǎn)單題.6、C【解析】
根據(jù)韋恩圖可確定所表示集合為,根據(jù)一元二次不等式解法和定義域的求法可求得集合,根據(jù)補(bǔ)集和交集定義可求得結(jié)果.【詳解】由韋恩圖可知:陰影部分表示,,,.故選:.【點(diǎn)睛】本題考查集合運(yùn)算中的補(bǔ)集和交集運(yùn)算,涉及到一元二次不等式和函數(shù)定義域的求解;關(guān)鍵是能夠根據(jù)韋恩圖確定所求集合.7、A【解析】
直線的方程為,令,得,得到a,b的關(guān)系,結(jié)合選項(xiàng)求解即可【詳解】直線的方程為,令,得.因?yàn)?,所以,只有選項(xiàng)滿足條件.故選:A【點(diǎn)睛】本題考查直線與雙曲線的位置關(guān)系以及雙曲線的標(biāo)準(zhǔn)方程,考查運(yùn)算求解能力.8、A【解析】
由三視圖還原出原幾何體,得出幾何體的結(jié)構(gòu)特征,然后計(jì)算體積.【詳解】由三視圖知原幾何體是一個(gè)四棱錐,四棱錐底面是邊長(zhǎng)為2的正方形,高為2,直觀圖如圖所示,.故選:A.【點(diǎn)睛】本題考查三視圖,考查棱錐的體積公式,掌握基本幾何體的三視圖是解題關(guān)鍵.9、C【解析】
先求出集合U,再根據(jù)補(bǔ)集的定義求出結(jié)果即可.【詳解】由題意得U=x|∵A=1,2∴CU故選C.【點(diǎn)睛】本題考查集合補(bǔ)集的運(yùn)算,求解的關(guān)鍵是正確求出集合U和熟悉補(bǔ)集的定義,屬于簡(jiǎn)單題.10、D【解析】試題分析:,,故選D.考點(diǎn):點(diǎn)線面的位置關(guān)系.11、A【解析】
列出所有可以表示成和為6的正整數(shù)式子,找到加數(shù)全部為質(zhì)數(shù)的只有,利用古典概型求解即可.【詳解】6拆成兩個(gè)正整數(shù)的和含有的基本事件有:(1,5),(2,4),(3,3),(4,2),(5,1),而加數(shù)全為質(zhì)數(shù)的有(3,3),根據(jù)古典概型知,所求概率為.故選:A.【點(diǎn)睛】本題主要考查了古典概型,基本事件,屬于容易題.12、C【解析】試題分析:A中,函數(shù)為偶函數(shù),但,不滿足條件;B中,函數(shù)為奇函數(shù),不滿足條件;C中,函數(shù)為偶函數(shù)且,滿足條件;D中,函數(shù)為偶函數(shù),但,不滿足條件,故選C.考點(diǎn):1、函數(shù)的奇偶性;2、函數(shù)的值域.二、填空題:本題共4小題,每小題5分,共20分。13、13【解析】
由導(dǎo)函數(shù)的應(yīng)用得:設(shè),,所以,,又,所以,即,由二項(xiàng)式定理:令得:,再由,求出,從而得到的值;【詳解】解:設(shè),,所以,,又,所以,即,取得:,又,所以,故,故答案為:13【點(diǎn)睛】本題考查了導(dǎo)函數(shù)的應(yīng)用、二項(xiàng)式定理,屬于中檔題14、【解析】
易知,設(shè),,利用絕對(duì)值不等式的性質(zhì)即可得解.【詳解】,設(shè),,令,當(dāng)時(shí),,所以單調(diào)遞減令,當(dāng)時(shí),,所以單調(diào)遞增所以當(dāng)時(shí),,,則則,即故答案為:.【點(diǎn)睛】本題考查函數(shù)最值的求法,考查絕對(duì)值不等式的性質(zhì),考查轉(zhuǎn)化思想及邏輯推理能力,屬于難題.15、【解析】
根據(jù)分層抽樣的定義建立比例關(guān)系即可得到結(jié)論.【詳解】設(shè)抽取的樣本為,則由題意得,解得.故答案為:【點(diǎn)睛】本題考查了分層抽樣的知識(shí),算出抽樣比是解題的關(guān)鍵,屬于基礎(chǔ)題.16、3【解析】
過點(diǎn)Q作直線平行于y=x+1,則M在兩條平行線的中間直線上,當(dāng)直線相切時(shí)距離最小,計(jì)算得到答案.【詳解】如圖所示:過點(diǎn)Q作直線平行于y=x+1,則M在兩條平行線的中間直線上,y=x2,則y'=2x=1,x=1點(diǎn)M為線段PQ的中點(diǎn),故M在直線y=x+38時(shí)距離最小,故故答案為:32【點(diǎn)睛】本題考查了拋物線中距離的最值問題,轉(zhuǎn)化為切線問題是解題的關(guān)鍵.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)答案不唯一,具體見解析(2)證明見解析【解析】
(1)根據(jù)題意得,分與討論即可得到函數(shù)的單調(diào)性;(2)根據(jù)題意構(gòu)造函數(shù),得,參變分離得,分析不等式,即轉(zhuǎn)化為,設(shè),再構(gòu)造函數(shù),利用導(dǎo)數(shù)得單調(diào)性,進(jìn)而得證.【詳解】(1)依題意,當(dāng)時(shí),,①當(dāng)時(shí),恒成立,此時(shí)在定義域上單調(diào)遞增;②當(dāng)時(shí),若,;若,;故此時(shí)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.(2)方法1:由得令,則,依題意有,即,要證,只需證(不妨設(shè)),即證,令,設(shè),則,在單調(diào)遞減,即,從而有.方法2:由得令,則,當(dāng)時(shí),時(shí),故在上單調(diào)遞增,在上單調(diào)遞減,不妨設(shè),則,要證,只需證,易知,故只需證,即證令,(),則==,(也可代入后再求導(dǎo))在上單調(diào)遞減,,故對(duì)于時(shí),總有.由此得【點(diǎn)睛】本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及分類討論思想,轉(zhuǎn)化思想,屬于難題.18、(1)或;(2)見解析【解析】
(1)由已知條件利用點(diǎn)斜式設(shè)出直線的方程,則可表示出點(diǎn)的坐標(biāo),再由的關(guān)系表示出點(diǎn)的坐標(biāo),而點(diǎn)在橢圓上,將其坐標(biāo)代入橢圓方程中可求出直線的斜率;(2)設(shè)出兩點(diǎn)的坐標(biāo),則點(diǎn)的坐標(biāo)可以表示出,然后直線的方程與橢圓方程聯(lián)立成方程,消元后得到關(guān)于的一元二次方程,再利用根與系數(shù)的關(guān)系,再結(jié)合直線的方程,化簡(jiǎn)可得結(jié)果.【詳解】(1)由條件可知直線的斜率存在,則可設(shè)直線的方程為,則,由,有,所以,由在橢圓上,則,解得,此時(shí)在橢圓內(nèi)部,所以滿足直線與橢圓相交,故所求直線方程為或.(也可聯(lián)立直線與橢圓方程,由驗(yàn)證)(2)設(shè),則,直線的方程為.由得,由,解得,,當(dāng)時(shí),,故直線恒過定點(diǎn).【點(diǎn)睛】此題考查的是直線與橢圓的位置關(guān)系中的過定點(diǎn)問題,計(jì)算過程較復(fù)雜,屬于難題.19、(1);(2).【解析】
(1)分別取的中點(diǎn)為,易得兩兩垂直,以所在直線為軸建立空間直角坐標(biāo)系,易得為平面的法向量,只需求出平面的法向量為,再利用計(jì)算即可;(2)求出,利用計(jì)算即可.【詳解】(1)分別取的中點(diǎn)為,連結(jié).因?yàn)椤?,所以?因?yàn)?,所?因?yàn)閭?cè)面為等邊三角形,所以又因?yàn)槠矫嫫矫?,平面平面,平面,所以平面,所以兩兩垂?以為空間坐標(biāo)系的原點(diǎn),分別以所在直線為軸建立如圖所示的空間直角坐標(biāo)系,因?yàn)?,則,,.設(shè)平面的法向量為,則,即.取,則,所以.又為平面的法向量,設(shè)平面與平面所成的銳二面角的大小為,則,所以平面與平面所成的銳二面角的大小為.(2)由(1)得,平面的法向量為,所以成.又直線與平面所成角為,所以,即,即,化簡(jiǎn)得,所以,符合題意.【點(diǎn)睛】本題考查利用向量坐標(biāo)法求面面角、線面角,涉及到面面垂直的性質(zhì)定理的應(yīng)用,做好此類題的關(guān)鍵是準(zhǔn)確寫出點(diǎn)的坐標(biāo),是一道中檔題.20、(1)證明見解析;(2)【解析】
(1)由已知可證,即可證明結(jié)論;(2)根據(jù)已知可證平面,建立空間直角坐標(biāo)系,求出坐標(biāo),進(jìn)而求出平面和平面的法向量坐標(biāo),由空間向量的二面角公式,即可求解.【詳解】方法一:(1)依題意,且∴,∴四邊形是平行四邊形,∴,∵平面,平面,∴平面.(2)∵平面,∴,∵且為的中點(diǎn),∴,∵平面且,∴平面,以為原點(diǎn),分別以為軸、軸、軸的正方向,建立如圖所示的空間直角坐標(biāo)系,則,,,,∴設(shè)平面的法向量為,則,∴,取,則.設(shè)平面的法向量為,則,∴,取,則.∴,設(shè)二面角的平面角為,則,∴二面角的正弦值為.方法二:(1)證明:連接交于點(diǎn),因?yàn)樗倪呅螢槠叫兴倪呅?,所以為中點(diǎn),又因?yàn)樗倪呅螢榱庑?,所以為中點(diǎn),∴在中,且,∵平面,平面,∴平面(2)略,同方法一.【點(diǎn)睛】本題主要考查線面平行的證明,考查空間向量法求面面角,意在考查直觀想象、邏輯推理與數(shù)學(xué)運(yùn)算的數(shù)學(xué)核心素養(yǎng),屬于中檔題.21、(1)(2)存在,【解析】
由數(shù)列為“數(shù)列”可得,,,兩式相減得,又,利用等比數(shù)列通項(xiàng)公式即可求出,進(jìn)而求出;由題意得,,,兩式相減得,,據(jù)此可得,當(dāng)時(shí),,進(jìn)而可得,即數(shù)列為常數(shù)列,進(jìn)而可得,結(jié)合,得到關(guān)于的不等式,再由時(shí),且為整數(shù)即可求出符合題意的的所有值.【詳解】因?yàn)閿?shù)列為“數(shù)列”,所以,故,兩式相減得,在中令,則可得,故所以,所以數(shù)列是以為首項(xiàng),以為公比的等比數(shù)列,所以,因?yàn)?,所?(2)由題意得,故,兩式相減得所以,當(dāng)時(shí),又因?yàn)樗援?dāng)時(shí),所以成立,所以當(dāng)時(shí),數(shù)列是常數(shù)列,所以因?yàn)楫?dāng)時(shí),成立,所以,所以在中令,因?yàn)椋钥傻?,所以,由時(shí),且為整數(shù),可得,把分別代入不等式可得,,所以存在數(shù)列符合題意,的所有值為.【點(diǎn)睛】本題考查數(shù)列的新定義、等比數(shù)列的通項(xiàng)公式和數(shù)列遞推公式的運(yùn)用;考查運(yùn)算求解能
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 天津2025年天津市農(nóng)業(yè)科學(xué)院招聘工作人員(第二輪)筆試歷年參考題庫(kù)附帶答案詳解
- 河套學(xué)院《裝飾工程管理與現(xiàn)場(chǎng)實(shí)訓(xùn)》2023-2024學(xué)年第二學(xué)期期末試卷
- 天津商業(yè)大學(xué)寶德學(xué)院《環(huán)境研究法》2023-2024學(xué)年第二學(xué)期期末試卷
- 長(zhǎng)白山職業(yè)技術(shù)學(xué)院《專業(yè)綜合實(shí)踐2(智能電子系統(tǒng)設(shè)計(jì)與制作)》2023-2024學(xué)年第二學(xué)期期末試卷
- 山東財(cái)經(jīng)大學(xué)燕山學(xué)院《中醫(yī)學(xué)基礎(chǔ)1》2023-2024學(xué)年第二學(xué)期期末試卷
- 撫順職業(yè)技術(shù)學(xué)院《建筑制圖與AutoCAD》2023-2024學(xué)年第二學(xué)期期末試卷
- 烏蘭察布醫(yī)學(xué)高等??茖W(xué)校《基因工程制藥》2023-2024學(xué)年第二學(xué)期期末試卷
- 四川工商學(xué)院《材料成型裝備及自動(dòng)化》2023-2024學(xué)年第二學(xué)期期末試卷
- 廊坊職業(yè)技術(shù)學(xué)院《產(chǎn)品設(shè)計(jì)表達(dá)基礎(chǔ)》2023-2024學(xué)年第二學(xué)期期末試卷
- 上海師范大學(xué)天華學(xué)院《電子電路基礎(chǔ)實(shí)驗(yàn)(下)》2023-2024學(xué)年第二學(xué)期期末試卷
- Unit+1+Extended+reading課件高中英語牛津譯林版(2020)選擇性必修第一冊(cè)
- 重型自卸車貨箱與舉升裝置設(shè)計(jì)(含CAD圖紙)
- 內(nèi)蒙古煤礦豎井地質(zhì)勘察施工技術(shù)
- 周1530安全教育記錄(2021至2022)
- 物料管理入門部分真題含答案
- 德育主題班會(huì)課件 飄揚(yáng)紅領(lǐng)巾 光榮少先隊(duì)
- 大學(xué)生安全教育智慧樹知到答案章節(jié)測(cè)試2023年中國(guó)海洋大學(xué)
- 初中英語-Module 12 Unit 2 Repeat these three words dailyreduce,reuse and recycle.教學(xué)課件設(shè)計(jì)
- 西南大學(xué)藥物化學(xué)課件-第5章 前藥原理
- 建筑工程技術(shù)畢業(yè)論文設(shè)計(jì)
- (小升初數(shù)學(xué)專題)應(yīng)用題分類總復(fù)習(xí)
評(píng)論
0/150
提交評(píng)論