新高考數(shù)學(xué)二輪復(fù)習(xí)強(qiáng)化練習(xí)專題17 直線與圓及相關(guān)的最值問題(講)(解析版)_第1頁
新高考數(shù)學(xué)二輪復(fù)習(xí)強(qiáng)化練習(xí)專題17 直線與圓及相關(guān)的最值問題(講)(解析版)_第2頁
新高考數(shù)學(xué)二輪復(fù)習(xí)強(qiáng)化練習(xí)專題17 直線與圓及相關(guān)的最值問題(講)(解析版)_第3頁
新高考數(shù)學(xué)二輪復(fù)習(xí)強(qiáng)化練習(xí)專題17 直線與圓及相關(guān)的最值問題(講)(解析版)_第4頁
新高考數(shù)學(xué)二輪復(fù)習(xí)強(qiáng)化練習(xí)專題17 直線與圓及相關(guān)的最值問題(講)(解析版)_第5頁
已閱讀5頁,還剩20頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

第一篇熱點(diǎn)、難點(diǎn)突破篇專題17直線與圓及相關(guān)的最值問題(講)真題體驗(yàn)感悟高考1.(2020·全國·統(tǒng)考高考真題)若過點(diǎn)(2,1)的圓與兩坐標(biāo)軸都相切,則圓心到直線SKIPIF1<0的距離為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】由題意可知圓心在第一象限,設(shè)圓心的坐標(biāo)為SKIPIF1<0,可得圓的半徑為SKIPIF1<0,寫出圓的標(biāo)準(zhǔn)方程,利用點(diǎn)SKIPIF1<0在圓上,求得實(shí)數(shù)SKIPIF1<0的值,利用點(diǎn)到直線的距離公式可求出圓心到直線SKIPIF1<0的距離.【詳解】由于圓上的點(diǎn)SKIPIF1<0在第一象限,若圓心不在第一象限,則圓與至少與一條坐標(biāo)軸相交,不合乎題意,所以圓心必在第一象限,設(shè)圓心的坐標(biāo)為SKIPIF1<0,則圓的半徑為SKIPIF1<0,圓的標(biāo)準(zhǔn)方程為SKIPIF1<0.由題意可得SKIPIF1<0,可得SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,所以圓心的坐標(biāo)為SKIPIF1<0或SKIPIF1<0,圓心到直線的距離均為SKIPIF1<0;圓心到直線的距離均為SKIPIF1<0圓心到直線SKIPIF1<0的距離均為SKIPIF1<0;所以,圓心到直線SKIPIF1<0的距離為SKIPIF1<0.故選:B.2.(2021·北京·統(tǒng)考高考真題)已知直線SKIPIF1<0(SKIPIF1<0為常數(shù))與圓SKIPIF1<0交于點(diǎn)SKIPIF1<0,當(dāng)SKIPIF1<0變化時(shí),若SKIPIF1<0的最小值為2,則SKIPIF1<0

A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】先求得圓心到直線距離,即可表示出弦長,根據(jù)弦長最小值得出SKIPIF1<0【詳解】由題可得圓心為SKIPIF1<0,半徑為2,則圓心到直線的距離SKIPIF1<0,則弦長為SKIPIF1<0,則當(dāng)SKIPIF1<0時(shí),弦長SKIPIF1<0取得最小值為SKIPIF1<0,解得SKIPIF1<0.故選:C.3.(2020·全國·統(tǒng)考高考真題)若直線l與曲線y=SKIPIF1<0和x2+y2=SKIPIF1<0都相切,則l的方程為(

)A.y=2x+1 B.y=2x+SKIPIF1<0 C.y=SKIPIF1<0x+1 D.y=SKIPIF1<0x+SKIPIF1<0【答案】D【分析】根據(jù)導(dǎo)數(shù)的幾何意義設(shè)出直線SKIPIF1<0的方程,再由直線與圓相切的性質(zhì),即可得出答案.【詳解】設(shè)直線SKIPIF1<0在曲線SKIPIF1<0上的切點(diǎn)為SKIPIF1<0,則SKIPIF1<0,函數(shù)SKIPIF1<0的導(dǎo)數(shù)為SKIPIF1<0,則直線SKIPIF1<0的斜率SKIPIF1<0,設(shè)直線SKIPIF1<0的方程為SKIPIF1<0,即SKIPIF1<0,由于直線SKIPIF1<0與圓SKIPIF1<0相切,則SKIPIF1<0,兩邊平方并整理得SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0(舍),則直線SKIPIF1<0的方程為SKIPIF1<0,即SKIPIF1<0.故選:D.總結(jié)規(guī)律預(yù)測考向(一)規(guī)律與預(yù)測(1)直線、圓的方程及位置關(guān)系問題,多以選擇題或填空題的形式呈現(xiàn),此類試題難度中等偏下.有時(shí)也會(huì)出現(xiàn)在壓軸題的位置,難度較大.

(2)和導(dǎo)數(shù)、圓錐曲線相結(jié)合,求直線的方程,考查點(diǎn)到直線的距離公式,中低難度.(3)和圓錐曲線相結(jié)合,求圓的方程或弦長、面積等,中高難度.(二)本專題考向展示考點(diǎn)突破典例分析考向一求直線方程【核心知識(shí)】直線方程的幾種形式:兩直線平行、垂直的條件:【典例分析】典例1.(2020·山東·統(tǒng)考高考真題)直線SKIPIF1<0關(guān)于點(diǎn)SKIPIF1<0對(duì)稱的直線方程是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】設(shè)對(duì)稱的直線方程上的一點(diǎn)的坐標(biāo)為SKIPIF1<0,則其關(guān)于點(diǎn)SKIPIF1<0對(duì)稱的點(diǎn)的坐標(biāo)為SKIPIF1<0,代入已知直線即可求得結(jié)果.【詳解】設(shè)對(duì)稱的直線方程上的一點(diǎn)的坐標(biāo)為SKIPIF1<0,則其關(guān)于點(diǎn)SKIPIF1<0對(duì)稱的點(diǎn)的坐標(biāo)為SKIPIF1<0,因?yàn)辄c(diǎn)SKIPIF1<0在直線SKIPIF1<0上,所以SKIPIF1<0即SKIPIF1<0.故選:D.典例2.(2022·全國·統(tǒng)考高考真題)寫出與圓SKIPIF1<0和SKIPIF1<0都相切的一條直線的方程________________.【答案】SKIPIF1<0或SKIPIF1<0或SKIPIF1<0【分析】先判斷兩圓位置關(guān)系,分情況討論即可.【詳解】[方法一]:顯然直線的斜率不為0,不妨設(shè)直線方程為SKIPIF1<0,于是SKIPIF1<0,SKIPIF1<0故SKIPIF1<0①,SKIPIF1<0于是SKIPIF1<0或SKIPIF1<0,再結(jié)合①解得SKIPIF1<0或SKIPIF1<0或SKIPIF1<0,所以直線方程有三條,分別為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0填一條即可SKIPIF1<0[方法二]:設(shè)圓SKIPIF1<0的圓心SKIPIF1<0,半徑為SKIPIF1<0,圓SKIPIF1<0的圓心SKIPIF1<0,半徑SKIPIF1<0,則SKIPIF1<0,因此兩圓外切,由圖像可知,共有三條直線符合條件,顯然SKIPIF1<0符合題意;又由方程SKIPIF1<0和SKIPIF1<0相減可得方程SKIPIF1<0,即為過兩圓公共切點(diǎn)的切線方程,又易知兩圓圓心所在直線OC的方程為SKIPIF1<0,直線OC與直線SKIPIF1<0的交點(diǎn)為SKIPIF1<0,設(shè)過該點(diǎn)的直線為SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,從而該切線的方程為SKIPIF1<0填一條即可SKIPIF1<0[方法三]:圓SKIPIF1<0的圓心為SKIPIF1<0,半徑為SKIPIF1<0,圓SKIPIF1<0的圓心SKIPIF1<0為SKIPIF1<0,半徑為SKIPIF1<0,兩圓圓心距為SKIPIF1<0,等于兩圓半徑之和,故兩圓外切,如圖,當(dāng)切線為l時(shí),因?yàn)镾KIPIF1<0,所以SKIPIF1<0,設(shè)方程為SKIPIF1<0O到l的距離SKIPIF1<0,解得SKIPIF1<0,所以l的方程為SKIPIF1<0,當(dāng)切線為m時(shí),設(shè)直線方程為SKIPIF1<0,其中SKIPIF1<0,SKIPIF1<0,由題意SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0當(dāng)切線為n時(shí),易知切線方程為SKIPIF1<0,故答案為:SKIPIF1<0或SKIPIF1<0或SKIPIF1<0.【規(guī)律方法】解決直線方程問題的注意點(diǎn)(1)求解兩條直線平行的問題時(shí),在利用SKIPIF1<0建立方程求出參數(shù)的值后,要注意代入檢驗(yàn),排除兩條直線重合的可能性.(2)要注意直線方程每種形式的局限性,點(diǎn)斜式、兩點(diǎn)式、斜截式要求直線不能與x軸垂直,而截距式方程即不能表示過原點(diǎn)的直線,也不能表示垂直于坐標(biāo)軸的直線.(3)討論兩直線的位置關(guān)系時(shí),要注意直線的斜率是否存在.(4)直線與圓相切時(shí),利用“切線與過切點(diǎn)的半徑垂直,圓心到切線的距離等于半徑”建立關(guān)于切線斜率的等式,一般求切線方程時(shí)主要選擇點(diǎn)斜式.考向二求圓的方程【核心知識(shí)】圓的標(biāo)準(zhǔn)方程:圓的一般方程:【典例分析】典例3.(2023·全國·模擬預(yù)測)已知圓SKIPIF1<0:SKIPIF1<0與直線SKIPIF1<0:SKIPIF1<0,寫出一個(gè)半徑為SKIPIF1<0,且與圓SKIPIF1<0及直線都相切的圓的方程:______.【答案】SKIPIF1<0(答案不唯一)【分析】根據(jù)圓的圓心和半徑,結(jié)合直線和圓的位置關(guān)系及兩個(gè)圓的位置關(guān)系計(jì)算即可.【詳解】設(shè)圓心SKIPIF1<0為SKIPIF1<0,由已知圓SKIPIF1<0與直線SKIPIF1<0:SKIPIF1<0相切,圓SKIPIF1<0與圓SKIPIF1<0:SKIPIF1<0相切,可得SKIPIF1<0,即得SKIPIF1<0或SKIPIF1<0或SKIPIF1<0,且已知半徑為SKIPIF1<0,所以圓的方程可以為:SKIPIF1<0或SKIPIF1<0或SKIPIF1<0故答案為:SKIPIF1<0(答案不唯一)典例4.(2022·全國·統(tǒng)考高考真題)設(shè)點(diǎn)M在直線SKIPIF1<0上,點(diǎn)SKIPIF1<0和SKIPIF1<0均在SKIPIF1<0上,則SKIPIF1<0的方程為______________.【答案】SKIPIF1<0【分析】設(shè)出點(diǎn)M的坐標(biāo),利用SKIPIF1<0和SKIPIF1<0均在SKIPIF1<0上,求得圓心及半徑,即可得圓的方程.【詳解】[方法一]:三點(diǎn)共圓∵點(diǎn)M在直線SKIPIF1<0上,∴設(shè)點(diǎn)M為SKIPIF1<0,又因?yàn)辄c(diǎn)SKIPIF1<0和SKIPIF1<0均在SKIPIF1<0上,∴點(diǎn)M到兩點(diǎn)的距離相等且為半徑R,∴SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的方程為SKIPIF1<0.故答案為:SKIPIF1<0[方法二]:圓的幾何性質(zhì)由題可知,M是以(3,0)和(0,1)為端點(diǎn)的線段垂直平分線y=3x-4與直線SKIPIF1<0的交點(diǎn)(1,-1).SKIPIF1<0,SKIPIF1<0的方程為SKIPIF1<0.故答案為:SKIPIF1<0典例5.(2022·全國·統(tǒng)考高考真題)過四點(diǎn)SKIPIF1<0中的三點(diǎn)的一個(gè)圓的方程為____________.【答案】SKIPIF1<0或SKIPIF1<0或SKIPIF1<0或SKIPIF1<0.【分析】方法一:設(shè)圓的方程為SKIPIF1<0,根據(jù)所選點(diǎn)的坐標(biāo),得到方程組,解得即可;【詳解】[方法一]:圓的一般方程依題意設(shè)圓的方程為SKIPIF1<0,(1)若過SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,所以圓的方程為SKIPIF1<0,即SKIPIF1<0;(2)若過SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,所以圓的方程為SKIPIF1<0,即SKIPIF1<0;(3)若過SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,所以圓的方程為SKIPIF1<0,即SKIPIF1<0;(4)若過SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,所以圓的方程為SKIPIF1<0,即SKIPIF1<0;故答案為:SKIPIF1<0或SKIPIF1<0或SKIPIF1<0或SKIPIF1<0.[方法二]:【最優(yōu)解】圓的標(biāo)準(zhǔn)方程(三點(diǎn)中的兩條中垂線的交點(diǎn)為圓心)設(shè)SKIPIF1<0(1)若圓過SKIPIF1<0三點(diǎn),圓心在直線SKIPIF1<0,設(shè)圓心坐標(biāo)為SKIPIF1<0,則SKIPIF1<0,所以圓的方程為SKIPIF1<0;(2)若圓過SKIPIF1<0三點(diǎn),設(shè)圓心坐標(biāo)為SKIPIF1<0,則SKIPIF1<0,所以圓的方程為SKIPIF1<0;(3)若圓過SKIPIF1<0三點(diǎn),則線段SKIPIF1<0的中垂線方程為SKIPIF1<0,線段SKIPIF1<0的中垂線方程為SKIPIF1<0,聯(lián)立得SKIPIF1<0,所以圓的方程為SKIPIF1<0;(4)若圓過SKIPIF1<0三點(diǎn),則線段SKIPIF1<0的中垂線方程為SKIPIF1<0,線段SKIPIF1<0中垂線方程為SKIPIF1<0,聯(lián)立得SKIPIF1<0,所以圓的方程為SKIPIF1<0.故答案為:SKIPIF1<0或SKIPIF1<0或SKIPIF1<0或SKIPIF1<0.【整體點(diǎn)評(píng)】方法一;利用圓過三個(gè)點(diǎn),設(shè)圓的一般方程,解三元一次方程組,思想簡單,運(yùn)算稍繁;方法二;利用圓的幾何性質(zhì),先求出圓心再求半徑,運(yùn)算稍簡潔,是該題的最優(yōu)解.【總結(jié)提升】求圓的方程一般有兩種方法(1)幾何法:通過研究圓的性質(zhì)、直線與圓、圓與圓的位置關(guān)系,進(jìn)而求得圓的基本量和方程.(2)代數(shù)法:即用待定系數(shù)法先設(shè)出圓的方程,再由條件求得各系數(shù).考向三直線、圓的距離問題【核心知識(shí)】點(diǎn)SKIPIF1<0到直線SKIPIF1<0不同時(shí)為零)的距離SKIPIF1<0.【典例分析】典例6.(2023秋·江西贛州·高三統(tǒng)考期末)已知直線SKIPIF1<0與圓SKIPIF1<0相交于SKIPIF1<0兩點(diǎn),SKIPIF1<0是線段SKIPIF1<0的中點(diǎn),則點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離的最大值為(

).A.3 B.4 C.5 D.6【答案】C【分析】求得SKIPIF1<0點(diǎn)的軌跡,結(jié)合圓與直線的位置關(guān)系求解即可.【詳解】如圖所示,設(shè)SKIPIF1<0,直線SKIPIF1<0過定點(diǎn)SKIPIF1<0,圓SKIPIF1<0的圓心為SKIPIF1<0,半徑為2,因?yàn)镾KIPIF1<0,SKIPIF1<0是線段SKIPIF1<0的中點(diǎn),所以SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,整理得SKIPIF1<0SKIPIF1<0,所以點(diǎn)SKIPIF1<0的軌跡是以SKIPIF1<0為圓心,1為半徑的圓,原點(diǎn)除外,所以點(diǎn)SKIPIF1<0到直線SKIPIF1<0距離的最大值SKIPIF1<0,故選:C典例7.(2023·四川綿陽·統(tǒng)考二模)已知SKIPIF1<0,點(diǎn)A為直線SKIPIF1<0上的動(dòng)點(diǎn),過點(diǎn)SKIPIF1<0作直線與SKIPIF1<0相切于點(diǎn)SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0最小值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.4【答案】C【分析】設(shè)SKIPIF1<0,由切線長公式、兩點(diǎn)間距離公式計(jì)算SKIPIF1<0,轉(zhuǎn)化為點(diǎn)SKIPIF1<0到SKIPIF1<0和SKIPIF1<0的距離之和,即SKIPIF1<0,利用SKIPIF1<0關(guān)于直線SKIPIF1<0的對(duì)稱點(diǎn)SKIPIF1<0,得最小值為SKIPIF1<0,此時(shí)SKIPIF1<0共線.【詳解】設(shè)SKIPIF1<0,由已知SKIPIF1<0,圓半徑為SKIPIF1<0,由切線長公式得SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0,它表示點(diǎn)SKIPIF1<0到SKIPIF1<0和SKIPIF1<0的距離之和,即SKIPIF1<0,設(shè)SKIPIF1<0關(guān)于直線SKIPIF1<0的對(duì)稱點(diǎn)為SKIPIF1<0,SKIPIF1<0,易知當(dāng)SKIPIF1<0三點(diǎn)共線時(shí),SKIPIF1<0取得最小值SKIPIF1<0.故選:C.典例8.【多選題】(2021·全國·統(tǒng)考高考真題)已知點(diǎn)SKIPIF1<0在圓SKIPIF1<0上,點(diǎn)SKIPIF1<0、SKIPIF1<0,則(

)A.點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離小于SKIPIF1<0B.點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離大于SKIPIF1<0C.當(dāng)SKIPIF1<0最小時(shí),SKIPIF1<0D.當(dāng)SKIPIF1<0最大時(shí),SKIPIF1<0【答案】ACD【分析】計(jì)算出圓心到直線SKIPIF1<0的距離,可得出點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離的取值范圍,可判斷AB選項(xiàng)的正誤;分析可知,當(dāng)SKIPIF1<0最大或最小時(shí),SKIPIF1<0與圓SKIPIF1<0相切,利用勾股定理可判斷CD選項(xiàng)的正誤.【詳解】圓SKIPIF1<0的圓心為SKIPIF1<0,半徑為SKIPIF1<0,直線SKIPIF1<0的方程為SKIPIF1<0,即SKIPIF1<0,圓心SKIPIF1<0到直線SKIPIF1<0的距離為SKIPIF1<0,所以,點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離的最小值為SKIPIF1<0,最大值為SKIPIF1<0,A選項(xiàng)正確,B選項(xiàng)錯(cuò)誤;如下圖所示:當(dāng)SKIPIF1<0最大或最小時(shí),SKIPIF1<0與圓SKIPIF1<0相切,連接SKIPIF1<0、SKIPIF1<0,可知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由勾股定理可得SKIPIF1<0,CD選項(xiàng)正確.故選:ACD.【點(diǎn)睛】結(jié)論點(diǎn)睛:若直線SKIPIF1<0與半徑為SKIPIF1<0的圓SKIPIF1<0相離,圓心SKIPIF1<0到直線SKIPIF1<0的距離為SKIPIF1<0,則圓SKIPIF1<0上一點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離的取值范圍是SKIPIF1<0.典例9.(2023·重慶·統(tǒng)考一模)已知圓:SKIPIF1<0上恰有3個(gè)點(diǎn)到直線SKIPIF1<0:SKIPIF1<0的距離等于2,則SKIPIF1<0的值為_________.【答案】SKIPIF1<0【分析】根據(jù)圓上SKIPIF1<0個(gè)點(diǎn)到直線的距離等于SKIPIF1<0,可得圓心到直線的距離為SKIPIF1<0,利用點(diǎn)到直線的距離公式解出SKIPIF1<0即可.【詳解】解:因?yàn)閳A的方程為SKIPIF1<0,所以圓心為SKIPIF1<0,半徑為SKIPIF1<0,因?yàn)閳ASKIPIF1<0上恰有SKIPIF1<0個(gè)點(diǎn)到直線SKIPIF1<0的距離都等于SKIPIF1<0,所以只需要圓心到直線SKIPIF1<0SKIPIF1<0的距離為SKIPIF1<0即可,直線方程為SKIPIF1<0所以圓心到直線的距離為:SKIPIF1<0,且SKIPIF1<0解得SKIPIF1<0,故答案為:SKIPIF1<0【規(guī)律方法】(1)求點(diǎn)到直線的距離時(shí),應(yīng)先將直線方程化為一般式.(2)求兩平行線之間的距離時(shí),應(yīng)先將兩直線方程化為一般式且SKIPIF1<0的系數(shù)對(duì)應(yīng)相等.(3)求曲線上任意一點(diǎn)到已知直線的最小距離時(shí),要利用數(shù)形結(jié)合和轉(zhuǎn)化與化歸的思想解題.

考向四直線與圓、圓與圓位置關(guān)系判斷【核心知識(shí)】1.直線與圓的位置關(guān)系:相交、相切和相離,判斷的方法(1)點(diǎn)線距離法.(2)判別式法:設(shè)圓C:(x-a)2+(y-b)2=r2,直線l:Ax+By+C=0(A2+B2≠0),方程組SKIPIF1<0消去y,得到關(guān)于x的一元二次方程,其根的判別式為Δ,則直線與圓相離?Δ<0,直線與圓相切?Δ=0,直線與圓相交?Δ>0.2.圓與圓的位置關(guān)系有五種,即內(nèi)含、內(nèi)切、相交、外切、外離.【典例分析】典例10.【多選題】(2021·全國·統(tǒng)考高考真題)已知直線SKIPIF1<0與圓SKIPIF1<0,點(diǎn)SKIPIF1<0,則下列說法正確的是(

)A.若點(diǎn)A在圓C上,則直線l與圓C相切 B.若點(diǎn)A在圓C內(nèi),則直線l與圓C相離C.若點(diǎn)A在圓C外,則直線l與圓C相離 D.若點(diǎn)A在直線l上,則直線l與圓C相切【答案】ABD【分析】轉(zhuǎn)化點(diǎn)與圓、點(diǎn)與直線的位置關(guān)系為SKIPIF1<0的大小關(guān)系,結(jié)合點(diǎn)到直線的距離及直線與圓的位置關(guān)系即可得解.【詳解】圓心SKIPIF1<0到直線l的距離SKIPIF1<0,若點(diǎn)SKIPIF1<0在圓C上,則SKIPIF1<0,所以SKIPIF1<0,則直線l與圓C相切,故A正確;若點(diǎn)SKIPIF1<0在圓C內(nèi),則SKIPIF1<0,所以SKIPIF1<0,則直線l與圓C相離,故B正確;若點(diǎn)SKIPIF1<0在圓C外,則SKIPIF1<0,所以SKIPIF1<0,則直線l與圓C相交,故C錯(cuò)誤;若點(diǎn)SKIPIF1<0在直線l上,則SKIPIF1<0即SKIPIF1<0,所以SKIPIF1<0,直線l與圓C相切,故D正確.故選:ABD.典例11.【多選題】(2023·安徽馬鞍山·統(tǒng)考一模)已知直線SKIPIF1<0與圓SKIPIF1<0,則(

)A.直線SKIPIF1<0必過定點(diǎn) B.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0被圓SKIPIF1<0截得的弦長為SKIPIF1<0C.直線SKIPIF1<0與圓SKIPIF1<0可能相切 D.直線SKIPIF1<0與圓SKIPIF1<0不可能相離【答案】ABD【分析】將直線SKIPIF1<0變形為SKIPIF1<0,即可求定點(diǎn)坐標(biāo),即可判斷A;根據(jù)弦長公式求弦長,判斷B;根據(jù)直線SKIPIF1<0所過定點(diǎn)與圓SKIPIF1<0的關(guān)系,再結(jié)合直線方程的形式,即可判斷CD.【詳解】A.SKIPIF1<0,聯(lián)立SKIPIF1<0,得SKIPIF1<0,所以直線過點(diǎn)SKIPIF1<0,故A正確;B.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,圓心SKIPIF1<0到直線SKIPIF1<0的距離SKIPIF1<0,弦長SKIPIF1<0,故B正確;C.直線所過定點(diǎn)SKIPIF1<0在圓上,過點(diǎn)SKIPIF1<0與圓SKIPIF1<0相切的直線是SKIPIF1<0,但直線SKIPIF1<0,表示斜率存在的直線,表示不了直線SKIPIF1<0,故不存在直線SKIPIF1<0與圓SKIPIF1<0相切,故C錯(cuò)誤;D.直線所過定點(diǎn)SKIPIF1<0在圓上,所以直線SKIPIF1<0與圓SKIPIF1<0總有公共點(diǎn),不可能相離,故D正確.故選:ABD典例12.(2022·全國·統(tǒng)考高考真題)設(shè)點(diǎn)SKIPIF1<0,若直線SKIPIF1<0關(guān)于SKIPIF1<0對(duì)稱的直線與圓SKIPIF1<0有公共點(diǎn),則a的取值范圍是________.【答案】SKIPIF1<0【分析】首先求出點(diǎn)SKIPIF1<0關(guān)于SKIPIF1<0對(duì)稱點(diǎn)SKIPIF1<0的坐標(biāo),即可得到直線SKIPIF1<0的方程,根據(jù)圓心到直線的距離小于等于半徑得到不等式,解得即可;【詳解】解:SKIPIF1<0關(guān)于SKIPIF1<0對(duì)稱的點(diǎn)的坐標(biāo)為SKIPIF1<0,SKIPIF1<0在直線SKIPIF1<0上,所以SKIPIF1<0所在直線即為直線SKIPIF1<0,所以直線SKIPIF1<0為SKIPIF1<0,即SKIPIF1<0;圓SKIPIF1<0,圓心SKIPIF1<0,半徑SKIPIF1<0,依題意圓心到直線SKIPIF1<0的距離SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,即SKIPIF1<0;故答案為:SKIPIF1<0【總結(jié)提升】判斷直線與圓的位置關(guān)系主要通過比較圓心到直線的距離和半徑的大小,兩個(gè)圓的位置關(guān)系的判斷依據(jù)是兩個(gè)圓的圓心距與兩個(gè)圓的半徑差的絕對(duì)值或和的大小關(guān)系.過圓外一點(diǎn)求解切線段長的問題,可先求出圓心到圓外點(diǎn)的距離,再結(jié)合半徑利用勾股定理計(jì)算.考向五直線與圓、圓與圓弦長問題【核心知識(shí)】半徑、弦心距、弦長構(gòu)成的直角三角形,構(gòu)成三者間的關(guān)系SKIPIF1<0(其中SKIPIF1<0為弦長,SKIPIF1<0為圓的半徑,SKIPIF1<0為圓心到弦的距離).【典例分析】典例13.【多選題】(2023秋·江蘇泰州·高三統(tǒng)考期末)過圓SKIPIF1<0:SKIPIF1<0內(nèi)一點(diǎn)SKIPIF1<0作兩條互相垂直的弦SKIPIF1<0,SKIPIF1<0,得到四邊形SKIPIF1<0,則(

)A.SKIPIF1<0的最小值為4B.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0C.四邊形SKIPIF1<0面積的最大值為16D.SKIPIF1<0為定值【答案】ABD【分析】當(dāng)SKIPIF1<0為SKIPIF1<0中點(diǎn)時(shí)SKIPIF1<0最小,即可求出SKIPIF1<0,從而判斷A;設(shè)SKIPIF1<0到SKIPIF1<0,SKIPIF1<0的距離分別為SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,求出SKIPIF1<0,即可得到SKIPIF1<0,從而求出SKIPIF1<0,即可判斷B;根據(jù)SKIPIF1<0利用基本不等式求出四邊形SKIPIF1<0面積的最大值,即可判斷C;分別取SKIPIF1<0,SKIPIF1<0的中點(diǎn)SKIPIF1<0,SKIPIF1<0,根據(jù)數(shù)量積的運(yùn)算律求出SKIPIF1<0的值,即可判斷D.【詳解】解:當(dāng)SKIPIF1<0為SKIPIF1<0中點(diǎn)時(shí)SKIPIF1<0最小,SKIPIF1<0,SKIPIF1<0,故A正確;設(shè)SKIPIF1<0到SKIPIF1<0,SKIPIF1<0的距離分別為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,又SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,故B正確;因?yàn)镾KIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取等號(hào),所以SKIPIF1<0SKIPIF1<0SKIPIF1<0,故C錯(cuò)誤.SKIPIF1<0SKIPIF1<0分別取SKIPIF1<0,SKIPIF1<0的中點(diǎn)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0SKIPIF1<0SKIPIF1<0為定值,故D正確.故選:ABD.典例14.(2023秋·天津河西·高三??计谀┤暨^點(diǎn)SKIPIF1<0的直線SKIPIF1<0和圓SKIPIF1<0交于SKIPIF1<0兩點(diǎn),若弦長SKIPIF1<0,則直線SKIPIF1<0的方程為______.【答案】SKIPIF1<0或SKIPIF1<0【分析】根據(jù)題意結(jié)合垂徑定理求得SKIPIF1<0,再利用點(diǎn)到直線的距離公式運(yùn)算求解,注意討論直線的斜率是否存在.【詳解】由題意可知:圓SKIPIF1<0的圓心SKIPIF1<0,半徑SKIPIF1<0,設(shè)圓心SKIPIF1<0到直線SKIPIF1<0的距離為SKIPIF1<0,若弦長SKIPIF1<0,則SKIPIF1<0,可得SKIPIF1<0,當(dāng)直線SKIPIF1<0的斜率不存在時(shí),即直線SKIPIF1<0為SKIPIF1<0,故圓心SKIPIF1<0到直線SKIPIF1<0的距離為SKIPIF1<0,符合題意;當(dāng)直線SKIPIF1<0的斜率存在時(shí),設(shè)為SKIPIF1<0,則直線SKIPIF1<0為SKIPIF1<0,即SKIPIF1<0,故圓心SKIPIF1<0到直線SKIPIF1<0的距離為SKIPIF1<0,解得SKIPIF1<0此時(shí)直線SKIPIF1<0為SKIPIF1<0;綜上所述:直線SKIPIF1<0為SKIPIF1<0或SKIPIF1<0.故答案為:SKIPIF1<0或SKIPIF1<0.典例15.(2023·安徽淮南·統(tǒng)考一模)已知圓SKIPIF1<0與圓SKIPIF1<0交于A,B兩點(diǎn),則直線SKIPIF1<0的方程為______;SKIPIF1<0的面積為______.【答案】

SKIPIF1<0

SKIPIF1<0【分析】兩圓相減得到相交弦方程,即直線SKIPIF1<0的方程,求出圓心SKIPIF1<0,得到SKIPIF1<0到直線SKIPIF1<0的距離,利用垂徑定理得到SKIPIF1<0,得到三角形面積.【詳解】兩圓相減得:SKIPIF1<0,化簡得:SKIPIF1<0,故直線SKIPIF1<0的方程為SKIPIF1<0,圓SKIPIF1<0變形得到SKIPIF1<0,圓心SKIPIF1<0,半徑為2,故圓心SKIPIF1<0到直線SKIPIF1<0的距離為SKIPIF1<0,由垂徑定理得:SKIPIF1<0,故SKIPIF1<0的面積為SKIPIF1<0.故答案為:SKIPIF1<0,SKIPIF1<0.【總結(jié)提升】求解圓的弦長的方法1.幾何法:根據(jù)半徑、弦心距、弦長構(gòu)成的直角三角形,構(gòu)成三者間的關(guān)系SKIPIF1<0(其中SKIPIF1<0為弦長,SKIPIF1<0為圓的半徑,SKIPIF1<0為圓心到弦的距離).2.公式法:根據(jù)公式SKIPIF1<0求解(其中SKIPIF1<0為弦長SKIPIF1<0直線與圓相交所得兩個(gè)交點(diǎn)的橫坐標(biāo),SKIPIF1<0為直線的斜率).3.距離法:聯(lián)立直線與圓的方程,解方程組先求出兩交點(diǎn)坐標(biāo),再利用兩點(diǎn)間的距離公式求解.考向六直線、圓與圓錐曲線【核心知識(shí)】圓錐曲線方程及其幾何性質(zhì)【典例分析】典例16.(2023·全國·高三對(duì)口高考)設(shè)SKIPIF1<0、SKIPIF1<0分別為橢圓SKIPIF1<0的左右焦點(diǎn),與直線SKIPIF1<0相切的圓SKIPIF1<0交橢圓于點(diǎn)SKIPIF1<0,且SKIPIF1<0是直線SKIPIF1<0與圓SKIPIF1<0相切的切點(diǎn),則橢圓焦距與長軸長之比為________.【答案】SKIPIF1<0【分析】根據(jù)題意可得SKIPIF1<0,利用橢圓性質(zhì)可得SKIPIF1<0,結(jié)合SKIPIF1<0,即可求得SKIPIF1<0.【詳解】如圖所示,連接SKIPIF1<0,易得SKIPIF1<0,圓SKIPIF1<0的半徑SKIPIF1<0,所以SKIPIF1<0,而SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,且有SKIPIF1<0,化簡可得SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,可得SKIPIF1<0.故答案為:SKIPIF1<0.典例17.(2022·全國·統(tǒng)考高考真題)若雙曲線SKIPIF1<0的漸近線與圓SKIPIF1<0相切,則SKIPIF1<0_________.【答案】SKIPIF1<0【分析】首先求出雙曲線的漸近線方程,再將圓的方程化為標(biāo)準(zhǔn)式,即可得到圓心坐標(biāo)與半徑,依題意圓心到直線的距離等于圓的半徑,即可得到方程,解得即可.【詳解】解:雙曲線SKIPIF1<0的漸近線為SKIPIF1<0,即SKIPIF1<0,不妨取SKIPIF1<0,圓SKIPIF1<0,即SKIPIF1<0,所以圓心為SKIPIF1<0,半徑SKIPIF1<0,依題意圓心SKIPIF1<0到漸近線SKIPIF1<0的距離SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍去).故答案為:SKIPIF1<0.典例18.(2021·全國·高考真題)拋物線C的頂點(diǎn)為坐標(biāo)原點(diǎn)O.焦點(diǎn)在x軸上,直線l:SKIPIF1<0交C于P,Q兩點(diǎn),且SKIPIF1<0.已知點(diǎn)SKIPIF1<0,且SKIPIF1<0與l相切.(1)求C,SKIPIF1<0的方程;(2)設(shè)SKIPIF1<0是C上的三個(gè)點(diǎn),直線SKIPIF1<0,SKIPIF1<0均與SKIPIF1<0相切.判斷直線SKIPIF1<0與SKIPIF1<0的位置關(guān)系,并說明理由.【答案】(1)拋物線SKIPIF1<0,SKIPIF1<0方程為SKIPIF1<0;(2)相切,理由見解析【分析】(1)根據(jù)已知拋物線與SKIPIF1<0相交,可得出拋物線開口向右,設(shè)出標(biāo)準(zhǔn)方程,再利用對(duì)稱性設(shè)出SKIPIF1<0坐標(biāo),由SKIPIF1<0,即可求出SKIPIF1<0;由圓SKIPIF1<0與直線SKIPIF1<0相切,求出半徑,即可得出結(jié)論;(2)方法一:先考慮SKIPIF1<0斜率不存在,根據(jù)對(duì)稱性,即可得出結(jié)論;若SKIPIF1<0斜率存在,由SKIPIF1<0三點(diǎn)在拋物線上,將直線SKIPIF1<0斜率分別用縱坐標(biāo)表示,再由SKIPIF1<0與圓SKIPIF1<0相切,得出SKIPIF1<0與SKIPIF1<0的關(guān)系,最后求出SKIPIF1<0點(diǎn)到直線SKIPIF1<0的距離,即可得出結(jié)論.【詳解】(1)依題意設(shè)拋物線SKIPIF1<0,SKIPIF1<0,所以拋物線SKIPIF1<0的方程為SKIPIF1<0,SKIPIF1<0與SKIPIF1<0相切,所以半徑為SKIPIF1<0,所以SKIPIF1<0的方程為SKIPIF1<0;(2)[方法一]:設(shè)SKIPIF1<0若SKIPIF1<0斜率不存在,則SKIPIF1<0方程為SKIPIF1<0或SKIPIF1<0,若SKIPIF1<0方程為SKIPIF1<0,根據(jù)對(duì)稱性不妨設(shè)SKIPIF1<0,則過SKIPIF1<0與圓SKIPIF1<0相切的另一條直線方程為SKIPIF1<0,此時(shí)該直線與拋物線只有一個(gè)交點(diǎn),即不存在SKIPIF1<0,不合題意;若SKIPIF1<0方程為SKIPIF1<0,根據(jù)對(duì)稱性不妨設(shè)SKIPIF1<0則過SKIPIF1<0與圓SKIPIF1<0相切的直線SKIPIF1<0為SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,此時(shí)直線SKIPIF1<0關(guān)于SKIPIF1<0軸對(duì)稱,所以直線SKIPIF1<0與圓SKIPIF1<0相切;若直線SKIPIF1<0斜率均存在,則SKIPIF1<0,所以直線SKIPIF1<0方程為SKIPIF1<0,整理得SKIPIF1<0,同理直線SKIPIF1<0的方程為SKIPIF1<0,直線SKIPIF1<0的方程為SKIPIF1<0,SKIPIF1<0與圓SKIPIF1<0相切,SKIPIF1<0整理得SKIPIF1<0,SKIPIF1<0與圓SKIPIF1<0相切,同理SKIPIF1<0所以SKIPIF1<0為方程SKIPIF1<0的兩根,SKIPIF1<0,SKIPIF1<0到直線SKIPIF1<0的距離為:SKIPIF1<0SKIPIF1<0,所以直線SKIPIF1<0與圓SKIPIF1<0相切;綜上若直線SKIPIF1<0與圓SKIPIF1<0相切,則直線SKIPIF1<0與圓SKIPIF1<0相切.[方法二]【最優(yōu)解】:設(shè)SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),同解法1.當(dāng)SKIPIF1<0時(shí),直線SKIPIF1<0的方程為SKIPIF1<0,即SKIPIF1<0.由直線SKIPIF1<0與SKIPIF1<0相切得SKIPIF1<0,化簡得SKIPIF1<0,同理,由直線SKIPIF1<0與SKIPIF1<0相切得SKIPIF1<0.因?yàn)榉匠蘏KIPIF1<0同時(shí)經(jīng)過點(diǎn)SKIPIF1<0,所以SKIPIF1<0的直線方程為SKIPIF1<0,點(diǎn)M到直線SKIPIF1<0距離為SKIPIF1<0.所以直線SKIPIF1<0與SKIPIF1<0相切.綜上所述,若直線SKIPIF1<0與SKIPIF1<0相切,則直線SKIPIF1<0與SKIPIF1<0相切.【整體點(diǎn)評(píng)】第二問關(guān)鍵點(diǎn):過拋物線上的兩點(diǎn)直線斜率只需用其縱坐標(biāo)(或橫坐標(biāo))表示,將問題轉(zhuǎn)化為只與縱坐標(biāo)(或橫坐標(biāo))有關(guān);法一是要充分利用SKIPIF1<0的對(duì)稱性,抽象出SKIPIF1<0與SKIPIF1<0關(guān)系,把SKIPIF1<0的關(guān)系轉(zhuǎn)化為用SKIPIF1<0表示,法二是利用相切等條件得到SKIPIF1<0的直線方程為SKIPIF1<0,利用點(diǎn)到直線距離進(jìn)行證明,方法二更為簡單,開拓學(xué)生思路考向七隱圓問題【核心知識(shí)】1.在題設(shè)中沒有明確給出圓的相關(guān)信息,而是隱含在題目中的,要通過分析、轉(zhuǎn)化發(fā)現(xiàn)圓(或圓的方程),從而利用圓的知識(shí)來求解,稱這類問題為隱圓問題.

2.發(fā)現(xiàn)隱圓的方法(1)利用圓的定義或圓的幾何性質(zhì)確定隱圓.(2)在平面上給定相異的兩點(diǎn)SKIPIF1<0,設(shè)點(diǎn)SKIPIF1<0與點(diǎn)SKIPIF1<0在同一平面上,且滿足SKIPIF1<0,當(dāng)SKIPIF1<0且SKIPIF1<0時(shí),點(diǎn)SKIPIF1<0的軌跡是一個(gè)圓,這個(gè)圓我們稱為阿波羅尼斯圓.(3)兩定點(diǎn)SKIPIF1<0與動(dòng)點(diǎn)SKIPIF1<0滿足SKIPIF1<0,確定隱圓.(4)兩定點(diǎn)SKIPIF1<0與動(dòng)點(diǎn)SKIPIF1<0滿足SKIPIF1<0是定值,確定隱圓.【典例分析】典例19.(2020·全國·統(tǒng)考高考真題)已知⊙M:SKIPIF1<0,直線SKIPIF1<0:SKIPIF1<0,SKIPIF1<0為SKIPIF1<0上的動(dòng)點(diǎn),過點(diǎn)SKIPIF1<0作⊙M的切線SKIPIF1<0,切點(diǎn)為SKIPIF1<0,當(dāng)SKIPIF1<0最小時(shí),直線SKIPIF1<0的方程為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】由題意可判斷直線與圓相離,根據(jù)圓的知識(shí)可知,四點(diǎn)SKIPIF1<0共圓,且SKIPIF1<0,根據(jù)SKIPIF1<0可知,當(dāng)直線SKIPIF1<0時(shí),SKIPIF1<0最小,求出以SKIPIF1<0為直徑的圓的方程,根據(jù)圓系的知識(shí)即可求出直線SKIPIF

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論