新高考數(shù)學(xué)二輪復(fù)習(xí)強(qiáng)化練習(xí)專題01 不等式綜合問題(講)(解析版)_第1頁
新高考數(shù)學(xué)二輪復(fù)習(xí)強(qiáng)化練習(xí)專題01 不等式綜合問題(講)(解析版)_第2頁
新高考數(shù)學(xué)二輪復(fù)習(xí)強(qiáng)化練習(xí)專題01 不等式綜合問題(講)(解析版)_第3頁
新高考數(shù)學(xué)二輪復(fù)習(xí)強(qiáng)化練習(xí)專題01 不等式綜合問題(講)(解析版)_第4頁
新高考數(shù)學(xué)二輪復(fù)習(xí)強(qiáng)化練習(xí)專題01 不等式綜合問題(講)(解析版)_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

第一篇熱點(diǎn)、難點(diǎn)突破篇專題01不等式綜合問題(講)真題體驗(yàn)感悟高考1.(2020·山東·高考真題)已知二次函數(shù)SKIPIF1<0的圖像如圖所示,則不等式SKIPIF1<0的解集是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】本題可根據(jù)圖像得出結(jié)果.【詳解】結(jié)合圖像易知,不等式SKIPIF1<0的解集SKIPIF1<0,故選:A.2.(2021·全國·高考真題(文))下列函數(shù)中最小值為4的是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】根據(jù)二次函數(shù)的性質(zhì)可判斷SKIPIF1<0選項(xiàng)不符合題意,再根據(jù)基本不等式“一正二定三相等”,即可得出SKIPIF1<0不符合題意,SKIPIF1<0符合題意.【詳解】對于A,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取等號,所以其最小值為SKIPIF1<0,A不符合題意;對于B,因?yàn)镾KIPIF1<0,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取等號,等號取不到,所以其最小值不為SKIPIF1<0,B不符合題意;對于C,因?yàn)楹瘮?shù)定義域?yàn)镾KIPIF1<0,而SKIPIF1<0,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)取等號,所以其最小值為SKIPIF1<0,C符合題意;對于D,SKIPIF1<0,函數(shù)定義域?yàn)镾KIPIF1<0,而SKIPIF1<0且SKIPIF1<0,如當(dāng)SKIPIF1<0,SKIPIF1<0,D不符合題意.故選:C.【點(diǎn)睛】本題解題關(guān)鍵是理解基本不等式的使用條件,明確“一正二定三相等”的意義,再結(jié)合有關(guān)函數(shù)的性質(zhì)即可解出.3.(2021·全國·高考真題)已知SKIPIF1<0,SKIPIF1<0是橢圓SKIPIF1<0:SKIPIF1<0的兩個(gè)焦點(diǎn),點(diǎn)SKIPIF1<0在SKIPIF1<0上,則SKIPIF1<0的最大值為(

)A.13 B.12 C.9 D.6【答案】C【分析】本題通過利用橢圓定義得到SKIPIF1<0,借助基本不等式SKIPIF1<0即可得到答案.【詳解】由題,SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0(當(dāng)且僅當(dāng)SKIPIF1<0時(shí),等號成立).故選:C.4.(2008·四川·高考真題(理))已知等比數(shù)列SKIPIF1<0中SKIPIF1<0,則其前SKIPIF1<0項(xiàng)的和SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】設(shè)等比數(shù)列SKIPIF1<0的公比為SKIPIF1<0,由等比數(shù)列的通項(xiàng)表示SKIPIF1<0(即SKIPIF1<0的代數(shù)式),然后根據(jù)SKIPIF1<0的正負(fù)性進(jìn)行分類,分別求出SKIPIF1<0的范圍即可.【詳解】設(shè)等比數(shù)列SKIPIF1<0的公比為SKIPIF1<0,SKIPIF1<0等比數(shù)列SKIPIF1<0中SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;SKIPIF1<0SKIPIF1<0SKIPIF1<0.故選:D.5.【多選題】(2022·全國·高考真題)若x,y滿足SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】BC【分析】根據(jù)基本不等式或者取特值即可判斷各選項(xiàng)的真假.【詳解】因?yàn)镾KIPIF1<0(SKIPIF1<0R),由SKIPIF1<0可變形為,SKIPIF1<0,解得SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以A錯(cuò)誤,B正確;由SKIPIF1<0可變形為SKIPIF1<0,解得SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取等號,所以C正確;因?yàn)镾KIPIF1<0變形可得SKIPIF1<0,設(shè)SKIPIF1<0,所以SKIPIF1<0,因此SKIPIF1<0SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí)滿足等式,但是SKIPIF1<0不成立,所以D錯(cuò)誤.故選:BC.總結(jié)規(guī)律預(yù)測考向(一)規(guī)律與預(yù)測1.簡單不等式的解法是高考數(shù)學(xué)的基本要求,在許多題目中起到工具作用.2.解答求最值和不等式恒成立問題,常用到基本不等式,往往與函數(shù)、立體幾何、解析幾何等交匯命題.3.獨(dú)立考查不等式問題,題型多以選擇題、填空題形式考查,中等難度.(二)本專題考向展示考點(diǎn)突破典例分析考向一不等式的性質(zhì)與解法【核心知識】1.倒數(shù)性質(zhì)的幾個(gè)必備結(jié)論(1)a>b,ab>0?eq\f(1,a)<eq\f(1,b).(2)a<0<b?eq\f(1,a)<eq\f(1,b).(3)a>b>0,0<c<d?eq\f(a,c)>eq\f(b,d).(4)0<a<x<b或a<x<b<0?eq\f(1,b)<eq\f(1,x)<eq\f(1,a).2.兩個(gè)重要不等式若a>b>0,m>0,則(1)eq\f(b,a)<eq\f(b+m,a+m);eq\f(b,a)>eq\f(b-m,a-m)(b-m>0).(2)eq\f(a,b)>eq\f(a+m,b+m);eq\f(a,b)<eq\f(a-m,b-m)(b-m>0).3.一元二次不等式的解法:先將不等式化為一般形式ax2+bx+c>0(a≠0),再求相應(yīng)的一元二次方程ax2+bx+c=0(a≠0)的根,最后根據(jù)相應(yīng)的二次函數(shù)的圖象與x軸的位置關(guān)系,確定一元二次不等式的ax2+bx+c>0(a≠0)解集.【典例分析】典例1.(2018·全國·高考真題(理))設(shè)SKIPIF1<0,SKIPIF1<0,則()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】分析:求出SKIPIF1<0,得到SKIPIF1<0的范圍,進(jìn)而可得結(jié)果.詳解:.SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,即SKIPIF1<0又SKIPIF1<0SKIPIF1<0即SKIPIF1<0故選B.典例2.若不等式(a2-4)x2+(a+2)x-1≥0的解集是空集,則實(shí)數(shù)a的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0∪{2}【答案】B【解析】當(dāng)a2-4=0時(shí),解得a=2或a=-2,當(dāng)a=2時(shí),不等式可化為4x-1≥0,解集不是空集,不符合題意;當(dāng)a=-2時(shí),不等式可化為-1≥0,此式不成立,解集為空集.當(dāng)a2-4≠0時(shí),要使不等式的解集為空集,則有SKIPIF1<0解得-2<a<SKIPIF1<0.綜上,實(shí)數(shù)a的取值范圍是SKIPIF1<0.典例3.【多選題】(2021·河北高三二模)若實(shí)數(shù)SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,則下列選項(xiàng)中一定成立的有()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】AD【解析】根據(jù)條件,可得SKIPIF1<0或SKIPIF1<0,逐一分析四個(gè)選項(xiàng),即可得答案.【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0或SKIPIF1<0,所以SKIPIF1<0或SKIPIF1<0,所以SKIPIF1<0,故A正確;若SKIPIF1<0,則SKIPIF1<0,故B錯(cuò)誤;若SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,故C錯(cuò)誤;因?yàn)镾KIPIF1<0或SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,故D正確.故選:AD【易錯(cuò)提醒】求解含參不等式ax2+bx+c<0恒成立問題的易錯(cuò)點(diǎn)(1)對參數(shù)進(jìn)行討論時(shí)分類不完整,易忽略a=0時(shí)的情況.(2)不會(huì)通過轉(zhuǎn)換把參數(shù)作為主元進(jìn)行求解.(3)不考慮a的符號.考向二不等式的恒成立問題【核心知識】不等式恒成立問題的解題方法(1)f(x)>a對一切x∈I恒成立?f(x)min>a,x∈I;f(x)<a對一切x∈I恒成立?f(x)max<a,x∈I.(2)f(x)>g(x)對一切x∈I恒成立?當(dāng)x∈I時(shí),f(x)的圖象在g(x)的圖象的上方.(3)解決恒成立問題還可以利用分離參數(shù)法.解題時(shí)一定要搞清誰是變量,誰是參數(shù).一般地,知道誰的范圍,誰就是變量;求誰的范圍,誰就是參數(shù).利用分離參數(shù)法求解時(shí),常用到函數(shù)的單調(diào)性、基本不等式等知識.【典例分析】典例4.(2019·浙江·高考真題)已知SKIPIF1<0,函數(shù)SKIPIF1<0,若存在SKIPIF1<0,使得SKIPIF1<0,則實(shí)數(shù)SKIPIF1<0的最大值是____.【答案】SKIPIF1<0【解析】【分析】本題主要考查含參絕對值不等式、函數(shù)方程思想及數(shù)形結(jié)合思想,屬于能力型考題.從研究SKIPIF1<0入手,令SKIPIF1<0,從而使問題加以轉(zhuǎn)化,通過繪制函數(shù)圖象,觀察得解.【詳解】使得SKIPIF1<0,使得令SKIPIF1<0,則原不等式轉(zhuǎn)化為存在SKIPIF1<0,由折線函數(shù),如圖只需SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0的最大值是SKIPIF1<0【點(diǎn)睛】對于函數(shù)不等式問題,需充分利用轉(zhuǎn)化與化歸思想、數(shù)形結(jié)合思想.典例5.(2018·天津·高考真題(文))已知SKIPIF1<0,函數(shù)SKIPIF1<0若對任意x∈[–3,+SKIPIF1<0),f(x)≤SKIPIF1<0恒成立,則a的取值范圍是__________.【答案】SKIPIF1<0【解析】【分析】由題意分類討論SKIPIF1<0和SKIPIF1<0兩種情況,結(jié)合恒成立的條件整理計(jì)算即可求得最終結(jié)果.【詳解】分類討論:①當(dāng)SKIPIF1<0時(shí),SKIPIF1<0即:SKIPIF1<0,整理可得:SKIPIF1<0,由恒成立的條件可知:SKIPIF1<0,結(jié)合二次函數(shù)的性質(zhì)可知:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0;②當(dāng)SKIPIF1<0時(shí),SKIPIF1<0即:SKIPIF1<0,整理可得:SKIPIF1<0,由恒成立的條件可知:SKIPIF1<0,結(jié)合二次函數(shù)的性質(zhì)可知:當(dāng)SKIPIF1<0或SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0;綜合①②可得SKIPIF1<0的取值范圍是SKIPIF1<0,故答案為SKIPIF1<0.點(diǎn)睛:對于恒成立問題,常用到以下兩個(gè)結(jié)論:(1)a≥f(x)恒成立?a≥f(x)max;(2)a≤f(x)恒成立?a≤f(x)min.有關(guān)二次函數(shù)的問題,數(shù)形結(jié)合,密切聯(lián)系圖象是探求解題思路的有效方法.一般從:①開口方向;②對稱軸位置;③判別式;④端點(diǎn)函數(shù)值符號四個(gè)方面分析.典例6.(2020·江蘇省太湖高級中學(xué)高一期中)已知函數(shù)SKIPIF1<0,關(guān)于SKIPIF1<0的不等式SKIPIF1<0的解集為SKIPIF1<0.(1)求實(shí)數(shù)SKIPIF1<0,SKIPIF1<0的值;(2)求關(guān)于SKIPIF1<0的不等式SKIPIF1<0的解集;(3)若不等式SKIPIF1<0在SKIPIF1<0上恒成立,求實(shí)數(shù)SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0,(2)當(dāng)SKIPIF1<0時(shí),解集為SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),不等式無解,當(dāng)SKIPIF1<0時(shí),解集為SKIPIF1<0,(3)SKIPIF1<0【解析】(1)由題意得不等式SKIPIF1<0的解集為SKIPIF1<0,由根與系數(shù)的關(guān)系得SKIPIF1<0,從而可求出實(shí)數(shù)SKIPIF1<0,SKIPIF1<0的值;(2)由SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0,然后分SKIPIF1<0,SKIPIF1<0,SKIPIF1<0求解即可;(3)令SKIPIF1<0(SKIPIF1<0),則SKIPIF1<0在SKIPIF1<0上恒成立,即SKIPIF1<0,即SKIPIF1<0,令SKIPIF1<0,然后分對稱軸在SKIPIF1<0軸左側(cè)和右側(cè)兩種情況求解即可【詳解】(1)因?yàn)殛P(guān)于SKIPIF1<0的不等式SKIPIF1<0的解集為SKIPIF1<0,即不等式SKIPIF1<0的解集為SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,(2)由SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0,若SKIPIF1<0,則不等式無解,若SKIPIF1<0,則SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),解集為SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),不等式無解,當(dāng)SKIPIF1<0時(shí),解集為SKIPIF1<0(3)令SKIPIF1<0(SKIPIF1<0),則SKIPIF1<0在SKIPIF1<0上恒成立,即SKIPIF1<0,即SKIPIF1<0,令SKIPIF1<0,當(dāng)SKIPIF1<0,即SKIPIF1<0,對稱軸在SKIPIF1<0軸左側(cè),所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),即對稱軸在SKIPIF1<0軸右側(cè),則SKIPIF1<0,解得SKIPIF1<0,綜上SKIPIF1<0【規(guī)律方法】1.解決不等式恒成立問題的兩種思路(1)轉(zhuǎn)化成含有參數(shù)的不等式,借助對應(yīng)函數(shù)圖象,找到滿足題目要求的條件,構(gòu)造含參數(shù)的不等式(組),求得參數(shù)范圍.(2)分離參數(shù),通過求函數(shù)的最值,進(jìn)而確定參數(shù)的范圍.2.策略方法(1)若f(x)>0在集合A中恒成立,即集合A是不等式f(x)>0的解集的子集,可以先求解集,再由子集的含義求解參數(shù)的值(或范圍).(2)轉(zhuǎn)化為函數(shù)值域問題,即已知函數(shù)f(x)的值域?yàn)閇m,n],則f(x)≥a恒成立?f(x)min≥a,即m≥a;f(x)≤a恒成立?f(x)max≤a,即n≤a.考向三基本不等式及其應(yīng)用【核心知識】基本不等式求最值的常用解題技巧1.湊項(xiàng):通過調(diào)整項(xiàng)的符號,配湊項(xiàng)的系數(shù),使其積或和為定值.2.湊系數(shù):若無法直接運(yùn)用基本不等式求解,通過湊系數(shù)后可得到和或積為定值,從而利用基本不等式求最值.3.“1”的代換:先把已知條件中的等式變形為“1”的表達(dá)式?再把“1”的表達(dá)式與待求最值的表達(dá)式相乘?通過變形構(gòu)造和或積為定值的代數(shù)式求最值.4.換元:分式函數(shù)求最值,通常直接將分子配湊后將式子分開或?qū)⒎帜笓Q元后將式子分開(化為部分分式),即化為SKIPIF1<0,g(x)恒正或恒負(fù)的形式,然后運(yùn)用基本不等式來求最值.【典例分析】典例7.(2019·浙江·高考真題)若SKIPIF1<0,則“SKIPIF1<0”是“SKIPIF1<0”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件【答案】A【解析】本題根據(jù)基本不等式,結(jié)合選項(xiàng),判斷得出充分性成立,利用“特殊值法”,通過特取SKIPIF1<0的值,推出矛盾,確定必要性不成立.題目有一定難度,注重重要知識、基礎(chǔ)知識、邏輯推理能力的考查.【詳解】當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則當(dāng)SKIPIF1<0時(shí),有SKIPIF1<0,解得SKIPIF1<0,充分性成立;當(dāng)SKIPIF1<0時(shí),滿足SKIPIF1<0,但此時(shí)SKIPIF1<0,必要性不成立,綜上所述,“SKIPIF1<0”是“SKIPIF1<0”的充分不必要條件.典例8.(2020·全國·高考真題(理))設(shè)SKIPIF1<0為坐標(biāo)原點(diǎn),直線SKIPIF1<0與雙曲線SKIPIF1<0的兩條漸近線分別交于SKIPIF1<0兩點(diǎn),若SKIPIF1<0的面積為8,則SKIPIF1<0的焦距的最小值為(

)A.4 B.8 C.16 D.32【答案】B【分析】因?yàn)镾KIPIF1<0,可得雙曲線的漸近線方程是SKIPIF1<0,與直線SKIPIF1<0聯(lián)立方程求得SKIPIF1<0,SKIPIF1<0兩點(diǎn)坐標(biāo),即可求得SKIPIF1<0,根據(jù)SKIPIF1<0的面積為SKIPIF1<0,可得SKIPIF1<0值,根據(jù)SKIPIF1<0,結(jié)合均值不等式,即可求得答案.【詳解】SKIPIF1<0SKIPIF1<0SKIPIF1<0雙曲線的漸近線方程是SKIPIF1<0SKIPIF1<0直線SKIPIF1<0與雙曲線SKIPIF1<0的兩條漸近線分別交于SKIPIF1<0,SKIPIF1<0兩點(diǎn)不妨設(shè)SKIPIF1<0為在第一象限,SKIPIF1<0在第四象限聯(lián)立SKIPIF1<0,解得SKIPIF1<0故SKIPIF1<0聯(lián)立SKIPIF1<0,解得SKIPIF1<0故SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0面積為:SKIPIF1<0SKIPIF1<0雙曲線SKIPIF1<0SKIPIF1<0其焦距為SKIPIF1<0當(dāng)且僅當(dāng)SKIPIF1<0取等號SKIPIF1<0SKIPIF1<0的焦距的最小值:SKIPIF1<0故選:B.典例9.(2022·全國·高考真題(文))已知球O的半徑為1,四棱錐的頂點(diǎn)為O,底面的四個(gè)頂點(diǎn)均在球O的球面上,則當(dāng)該四棱錐的體積最大時(shí),其高為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】方法一:先證明當(dāng)四棱錐的頂點(diǎn)O到底面ABCD所在小圓距離一定時(shí),底面ABCD面積最大值為SKIPIF1<0,進(jìn)而得到四棱錐體積表達(dá)式,再利用均值定理去求四棱錐體積的最大值,從而得到當(dāng)該四棱錐的體積最大時(shí)其高的值.【詳解】[方法一]:【最優(yōu)解】基本不等式設(shè)該四棱錐底面為四邊形ABCD,四邊形ABCD所在小圓半徑為r,設(shè)四邊形ABCD對角線夾角為SKIPIF1<0,則SKIPIF1<0(當(dāng)且僅當(dāng)四邊形ABCD為正方形時(shí)等號成立)即當(dāng)四棱錐的頂點(diǎn)O到底面ABCD所在小圓距離一定時(shí),底面ABCD面積最大值為SKIPIF1<0又設(shè)四棱錐的高為SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0當(dāng)且僅當(dāng)SKIPIF1<0即SKIPIF1<0時(shí)等號成立.故選:C[方法二]:統(tǒng)一變量+基本不等式由題意可知,當(dāng)四棱錐為正四棱錐時(shí),其體積最大,設(shè)底面邊長為SKIPIF1<0,底面所在圓的半徑為SKIPIF1<0,則SKIPIF1<0,所以該四棱錐的高SKIPIF1<0,SKIPIF1<0(當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),等號成立)所以該四棱錐的體積最大時(shí),其高SKIPIF1<0.故選:C.[方法三]:利用導(dǎo)數(shù)求最值由題意可知,當(dāng)四棱錐為正四棱錐時(shí),其體積最大,設(shè)底面邊長為SKIPIF1<0,底面所在圓的半徑為SKIPIF1<0,則SKIPIF1<0,所以該四棱錐的高SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,單調(diào)遞增,SKIPIF1<0,SKIPIF1<0,單調(diào)遞減,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0最大,此時(shí)SKIPIF1<0.故選:C.【整體點(diǎn)評】方法一:思維嚴(yán)謹(jǐn),利用基本不等式求最值,模型熟悉,是該題的最優(yōu)解;方法二:消元,實(shí)現(xiàn)變量統(tǒng)一,再利用基本不等式求最值;方法三:消元,實(shí)現(xiàn)變量統(tǒng)一,利用導(dǎo)數(shù)求最值,是最值問題的常用解法,操作簡便,是通性通法.典例10.(2020·江蘇·高考真題)已知SKIPIF1<0,則SKIPIF1<0的最小值是_______.【答案】SKIPIF1<0【分析】根據(jù)題設(shè)條件可得SKIPIF1<0,可得SKIPIF1<0,利用基本不等式即可求解.【詳解】∵SKIPIF1<0∴SKIPIF1<0且SKIPIF1<0∴SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)取等號.∴SKIPIF1<0的最小值為SKIPIF1<0.故答案為:SKIPIF1<0.典例11.(2022·全國·高考真題(理))已知SKIPIF1<0中,點(diǎn)D在邊BC上,SKIPIF1<0.當(dāng)SKIPIF1<0取得最小值時(shí),SKIPIF1<0________.【答案】SKIPIF1<0##SKIPIF1<0【分析】設(shè)SKIPIF1<0,利用余弦定理表示出SKIPIF1<0后,結(jié)合基本不等式即可得解.【詳解】[方法一]:余弦定理設(shè)SKIPIF1<0,則在SKIPIF1<0中,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0即SKIPIF1<0時(shí),等號成立,所以當(dāng)SKIPIF1<0取最小值時(shí),SKIPIF1<0.故答案為:SKIPIF1<0.[方法二]:建系法令BD=t,以D為原點(diǎn),OC為x軸,建立平面直角坐標(biāo)系.則C(2t,0),A(1,SKIPIF1<0),B(-t,0)SKIPIF1<0[方法三]:余弦定理設(shè)BD=x,CD=2x.由余弦定理得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)等號成立.[方法四]:判別式法設(shè)SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0中,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,所以SKIPIF1<0,記SKIPIF1<0,則SKIPIF1<0由方程有解得:

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論