版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
第五講:函數(shù)的單調(diào)性、奇偶性、周期性【考點梳理】1.增函數(shù)與減函數(shù)一般地,設函數(shù)SKIPIF1<0的定義域為SKIPIF1<0:(1)如果對于定義域SKIPIF1<0內(nèi)某個區(qū)間SKIPIF1<0上的任意兩個自變量的值SKIPIF1<0,SKIPIF1<0,當SKIPIF1<0時,都有SKIPIF1<0,那么就說函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上是增函數(shù).(2)如果對于定義域SKIPIF1<0內(nèi)某個區(qū)間SKIPIF1<0上的任意兩個自變量的值SKIPIF1<0,SKIPIF1<0,當SKIPIF1<0時,都有SKIPIF1<0,那么就說函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上是減函數(shù).2.函數(shù)的最大值與最小值一般地,設函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,如果存在實數(shù)SKIPIF1<0滿足:(1)對于任意的SKIPIF1<0,都有SKIPIF1<0;存在SKIPIF1<0,使得SKIPIF1<0,那么,我們稱SKIPIF1<0是函數(shù)SKIPIF1<0的最大值.(2)對于任意的SKIPIF1<0,都有SKIPIF1<0;存在SKIPIF1<0,使得SKIPIF1<0,那么我們稱SKIPIF1<0是函數(shù)SKIPIF1<0的最小值.3.函數(shù)單調(diào)性的兩個等價結(jié)論設SKIPIF1<0則(1)SKIPIF1<0(或SKIPIF1<0在SKIPIF1<0上單調(diào)遞增。(2)SKIPIF1<0(或SKIPIF1<0?f(x)在SKIPIF1<0上單調(diào)遞減.4.函數(shù)的奇偶性奇偶性定義圖象特點偶函數(shù)如果函數(shù)SKIPIF1<0的定義域內(nèi)任意一個SKIPIF1<0都有SKIPIF1<0,那么函數(shù)SKIPIF1<0是偶函數(shù)關于SKIPIF1<0對稱奇函數(shù)如果函數(shù)SKIPIF1<0的定義域內(nèi)任意一個SKIPIF1<0都有SKIPIF1<0,那么函數(shù)SKIPIF1<0是奇函數(shù)關于原點對稱5.奇偶函數(shù)的性質(zhì)(1)奇函數(shù)在關于原點對稱的區(qū)間上的單調(diào)性相同,偶函數(shù)在關于原點對稱的區(qū)間上的單調(diào)性相反.(2)在公共定義域內(nèi)(ⅰ)兩個奇函數(shù)的和函數(shù)是奇函數(shù),兩個奇函數(shù)的積函數(shù)是偶函數(shù).(ⅱ)兩個偶函數(shù)的和函數(shù)、積函數(shù)是偶函數(shù).(ⅲ)一個奇函數(shù)與一個偶函數(shù)的積函數(shù)是奇函數(shù).(3)若SKIPIF1<0是奇函數(shù)且SKIPIF1<0處有意義,則SKIPIF1<0.6.函數(shù)的周期性(1)周期函數(shù):對于函數(shù)SKIPIF1<0,如果存在一個非零常數(shù)SKIPIF1<0,使得當SKIPIF1<0取定義域內(nèi)的任何值時,都有SKIPIF1<0,那么就稱函數(shù)SKIPIF1<0為周期函數(shù),稱SKIPIF1<0為這個函數(shù)的周期.(2)最小正周期:如果在周期函數(shù)SKIPIF1<0的所有周期中存在一個最小的正數(shù),那么這個最小正數(shù)就叫做SKIPIF1<0的最小正周期.(3)常見結(jié)論:若SKIPIF1<0,則SKIPIF1<0;若SKIPIF1<0,則SKIPIF1<0;若SKIPIF1<0,則SKIPIF1<0.【典型題型講解】考點一:函數(shù)的單調(diào)性【典例例題】例1.若定義在R上的函數(shù)f(x)對任意兩個不相等的實數(shù)a,b,總有SKIPIF1<0>0成立,則必有(
)A.f(x)在R上是增函數(shù) B.f(x)在R上是減函數(shù)C.函數(shù)f(x)先增后減 D.函數(shù)f(x)先減后增【方法技巧與總結(jié)】函數(shù)單調(diào)性的判斷方法①定義法:根據(jù)增函數(shù)、減函數(shù)的定義,按照“取值—變形—判斷符號—下結(jié)論”進行判斷.②圖象法:就是畫出函數(shù)的圖象,根據(jù)圖象的上升或下降趨勢,判斷函數(shù)的單調(diào)性.③直接法:就是對我們所熟悉的函數(shù),如一次函數(shù)、二次函數(shù)、反比例函數(shù)等,直接寫出它們的單調(diào)區(qū)間.【變式訓練】1.已知函數(shù)SKIPIF1<0,若SKIPIF1<0,則實數(shù)SKIPIF1<0的取值范圍是___.2.已知函數(shù)SKIPIF1<0的定義域為SKIPIF1<0,且對任意兩個不相等的實數(shù)SKIPIF1<0,SKIPIF1<0都有SKIPIF1<0,則不等式SKIPIF1<0的解集為(
).A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.(2022·廣東惠州·一模)已知SKIPIF1<0,則當SKIPIF1<0時,SKIPIF1<0與SKIPIF1<0的大小關系是(
)A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.不確定4.“SKIPIF1<0”是“函數(shù)SKIPIF1<0是在SKIPIF1<0上的單調(diào)函數(shù)”的(
)A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件5.已知函數(shù)SKIPIF1<0若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0僅有1個零點,則實數(shù)m的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<06.若函數(shù)SKIPIF1<0是SKIPIF1<0上的單調(diào)函數(shù),則SKIPIF1<0的取值范圍(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0考點二:判斷函數(shù)的奇偶性【典例例題】例1.已知函數(shù)SKIPIF1<0,則SKIPIF1<0(
)A.是偶函數(shù),且在SKIPIF1<0是單調(diào)遞增 B.是奇函數(shù),且在SKIPIF1<0是單調(diào)遞增C.是偶函數(shù),且在SKIPIF1<0是單調(diào)遞減 D.是奇函數(shù),且在SKIPIF1<0是單調(diào)遞減【方法技巧與總結(jié)】函數(shù)的奇偶性的判斷:圖像法、解析式法;常見函數(shù)的奇偶性?!咀兪接柧殹?.下列函數(shù)中,在其定義域內(nèi)既是奇函數(shù)又是減函數(shù)的是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.(2022·廣東·二模)存在函數(shù)SKIPIF1<0使得對于SKIPIF1<0都有SKIPIF1<0,則函數(shù)SKIPIF1<0可能為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.(2022·廣東湛江·一模)下列函數(shù)是奇函數(shù),且函數(shù)值恒小于1的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<04.(2022·廣東廣東·一模)下列四個函數(shù)中,以SKIPIF1<0為周期且在SKIPIF1<0上單調(diào)遞增的偶函數(shù)有(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0考點三:函數(shù)的奇偶性的應用【典例例題】例1.(2022·廣東中山·高三期末)(多選)已知函數(shù)SKIPIF1<0,則下列說法正確的是(
)A.函數(shù)SKIPIF1<0是偶函數(shù) B.函數(shù)SKIPIF1<0是奇函數(shù)C.函數(shù)SKIPIF1<0在SKIPIF1<0上為增函數(shù) D.函數(shù)SKIPIF1<0的值域為SKIPIF1<0例2.(2022·廣東汕尾·高三期末)我國著名數(shù)學家華羅庚先生曾說:數(shù)缺形時少直觀,形缺數(shù)時難入微,數(shù)形結(jié)合百般好,隔裂分家萬事休,在數(shù)學的學習和研究中,函數(shù)的解析式常用來研究函數(shù)圖象的特征,函數(shù)SKIPIF1<0的圖象大致為(
)A. B.C. D.【方法技巧與總結(jié)】函數(shù)單調(diào)性與奇偶性結(jié)合時,注意函數(shù)單調(diào)性和奇偶性的定義,以及奇偶函數(shù)圖像的對稱性.【變式訓練】1.(2021·廣東汕頭·高三期末)已知偶函數(shù)f(x)在區(qū)間SKIPIF1<0上單調(diào)遞減,若f(-1)=0,則滿足f(m)>0的實數(shù)m的取值范圍是______.2.(2022·廣東·金山中學高三期末)已知函數(shù)SKIPIF1<0,則SKIPIF1<0________.3.(2022·廣東深圳·一模)已知函數(shù)SKIPIF1<0是定義域為R的奇函數(shù),當SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0_________.4.(2022·廣東韶關·一模)已知函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),當SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<05.(2022·廣東·一模)已知函數(shù)SKIPIF1<0,SKIPIF1<0,則圖象如圖的函數(shù)可能是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<06.(2022·廣東湛江·一模)下列函數(shù)是奇函數(shù),且函數(shù)值恒小于1的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<07.(2022·廣東廣州·一模)若函數(shù)SKIPIF1<0的大致圖象如圖,則SKIPIF1<0的解析式可能是(
)SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<08.(2022·廣東廣東·一模)函數(shù)SKIPIF1<0的部分圖象大致為(
)A. B.C. D.考點四:函數(shù)的對稱性和周期性【典例例題】例1.設函數(shù)SKIPIF1<0的定義域為D,若對任意的SKIPIF1<0,且SKIPIF1<0,恒有SKIPIF1<0,則稱函數(shù)SKIPIF1<0具有對稱性,其中點SKIPIF1<0為函數(shù)SKIPIF1<0的對稱中心,研究函數(shù)SKIPIF1<0的對稱中心,求SKIPIF1<0(
)A.2022 B.4043 C.4044 D.8086【方法技巧與總結(jié)】(1)若函數(shù)SKIPIF1<0有兩條對稱軸SKIPIF1<0,SKIPIF1<0,則函數(shù)SKIPIF1<0是周期函數(shù),且SKIPIF1<0;(2)若函數(shù)SKIPIF1<0的圖象有兩個對稱中心SKIPIF1<0,則函數(shù)SKIPIF1<0是周期函數(shù),且SKIPIF1<0;(3)若函數(shù)SKIPIF1<0有一條對稱軸SKIPIF1<0和一個對稱中心SKIPIF1<0,則函數(shù)SKIPIF1<0是周期函數(shù),且SKIPIF1<0.【變式訓練】1.(2022·廣東珠海·高三期末)已知SKIPIF1<0是定義域在SKIPIF1<0上的奇函數(shù),且滿足SKIPIF1<0.當SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.4 D.SKIPIF1<02.已知定義在R上的函數(shù)SKIPIF1<0滿足SKIPIF1<0,且SKIPIF1<0是奇函數(shù),則(
)A.SKIPIF1<0是偶函數(shù) B.SKIPIF1<0的圖象關于直線SKIPIF1<0對稱C.SKIPIF1<0是奇函數(shù) D.SKIPIF1<0的圖象關于點SKIPIF1<0對稱3.已知函數(shù)SKIPIF1<0的定義域為R,且SKIPIF1<0對任意SKIPIF1<0恒成立,又函數(shù)SKIPIF1<0的圖象關于點SKIPIF1<0對稱,且SKIPIF1<0,則SKIPIF1<0(
)A.2021 B.SKIPIF1<0 C.2022 D.SKIPIF1<04.已知定義在R上的偶函數(shù)SKIPIF1<0滿足SKIPIF1<0,且當SKIPIF1<0時,SKIPIF1<0,則下面結(jié)論正確的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<05.已知函數(shù)SKIPIF1<0滿足SKIPIF1<0對任意SKIPIF1<0恒成立,又函數(shù)SKIPIF1<0的圖象關于點SKIPIF1<0對稱,且SKIPIF1<0則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<06.已知函數(shù)SKIPIF1<0是SKIPIF1<0上的奇函數(shù),且SKIPIF1<0,且當SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0的值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<07.已知SKIPIF1<0是定義在R上的奇函數(shù),若SKIPIF1<0為偶函數(shù)且SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.6【鞏固練習】一、單選題1.下列函數(shù)中,在其定義域內(nèi)既是奇函數(shù)又是減函數(shù)的是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.已知函數(shù)SKIPIF1<0,不等式SKIPIF1<0的解集為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<03.已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0的最大值是M,最小值是m,則SKIPIF1<0的值等于(
)A.0 B.10 C.SKIPIF1<0 D.SKIPIF1<04.已知函數(shù)SKIPIF1<0的圖象關于原點對稱,且SKIPIF1<0,當SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0(
)A.-11 B.-8 C.SKIPIF1<0 D.SKIPIF1<0二、多選題5.下面關于函數(shù)SKIPIF1<0的性質(zhì),說法正確的是(
)A.SKIPIF1<0的定義域為SKIPIF1<0 B.SKIPIF1<0的值域為SKIPIF1<0C.SKIPIF1<0在定義域上單調(diào)遞減 D.點SKIPIF1<0是SKIPIF1<0圖象的對稱中心6.已知定義在R上的偶函數(shù)SKIPIF1<0的圖像是連續(xù)的,SKIPIF1<0,SKIPIF1<0在區(qū)間SKIPIF1<0上是增函數(shù),則下列結(jié)論正確的是(
)A.SKIPIF1<0的一個周期為6 B.SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減C.SKIPIF1<0的圖像關于直線SKIPIF1<0對稱 D.SKIPIF1<0在區(qū)間SKIPIF1<0上共有100個零點7.(2022·重慶巴蜀中學高三階段練習)已知函數(shù)SKIPIF1<0對任意SKIPIF1<0都有SKIPIF1<0,若函數(shù)SKIPIF1<0的圖象關于SKIPIF1<0對稱,且對任意的SKIPIF1<0,且SKIPIF1<0,都有SKIP
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度坡屋面小青瓦施工質(zhì)量監(jiān)督與整改服務合同
- 二零二五年度新加坡留學就業(yè)輔導合同4篇
- 2025專業(yè)級防雷系統(tǒng)設計與施工監(jiān)管合同3篇
- 商場自動扶梯安裝與維護服務合同(2025年度)
- 二零二五版羅絲與楊洋的離婚協(xié)議及財產(chǎn)分割及子女撫養(yǎng)協(xié)議4篇
- 2025年度家具退貨及維修保養(yǎng)服務協(xié)議范本
- 2025版GB∕T30057(環(huán)保)固體廢物處理與資源化利用合同3篇
- 二零二五年度歷史文化遺址草坪保護與旅游合同3篇
- 二零二五年度醫(yī)療信息化系統(tǒng)建設與維護合同2篇
- 2025版新型綠色建筑勞務分包合同范本3篇
- 副總經(jīng)理招聘面試題與參考回答(某大型國企)2024年
- PDCA循環(huán)提高護士培訓率
- 2024-2030年中國智慧水務行業(yè)應用需求分析發(fā)展規(guī)劃研究報告
- 《獅子王》電影賞析
- 河北省保定市定州市2025屆高二數(shù)學第一學期期末監(jiān)測試題含解析
- 中醫(yī)護理人文
- 2024-2030年中國路亞用品市場銷售模式與競爭前景分析報告
- 貨物運輸安全培訓課件
- 前端年終述職報告
- 2024小說推文行業(yè)白皮書
- 市人民醫(yī)院關于開展“改善就醫(yī)感受提升患者體驗主題活動”2023-2025年實施方案及資料匯編
評論
0/150
提交評論