浙江省紹興市嵊州市2025屆高考仿真模擬數(shù)學(xué)試卷含解析_第1頁(yè)
浙江省紹興市嵊州市2025屆高考仿真模擬數(shù)學(xué)試卷含解析_第2頁(yè)
浙江省紹興市嵊州市2025屆高考仿真模擬數(shù)學(xué)試卷含解析_第3頁(yè)
浙江省紹興市嵊州市2025屆高考仿真模擬數(shù)學(xué)試卷含解析_第4頁(yè)
浙江省紹興市嵊州市2025屆高考仿真模擬數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

浙江省紹興市嵊州市2025屆高考仿真模擬數(shù)學(xué)試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù),則()A.1 B.2 C.3 D.42.已知集合,B={y∈N|y=x﹣1,x∈A},則A∪B=()A.{﹣1,0,1,2,3} B.{﹣1,0,1,2} C.{0,1,2} D.{x﹣1≤x≤2}3.已知函數(shù),若關(guān)于的方程有且只有一個(gè)實(shí)數(shù)根,則實(shí)數(shù)的取值范圍是()A. B.C. D.4.已知等差數(shù)列中,,則()A.20 B.18 C.16 D.145.胡夫金字塔是底面為正方形的錐體,四個(gè)側(cè)面都是相同的等腰三角形.研究發(fā)現(xiàn),該金字塔底面周長(zhǎng)除以倍的塔高,恰好為祖沖之發(fā)現(xiàn)的密率.設(shè)胡夫金字塔的高為,假如對(duì)胡夫金字塔進(jìn)行亮化,沿其側(cè)棱和底邊布設(shè)單條燈帶,則需要燈帶的總長(zhǎng)度約為A. B.C. D.6.已知a>b>0,c>1,則下列各式成立的是()A.sina>sinb B.ca>cb C.a(chǎn)c<bc D.7.在中,已知,,,為線段上的一點(diǎn),且,則的最小值為()A. B. C. D.8.已知函數(shù)的部分圖象如圖所示,則()A. B. C. D.9.已知橢圓:的左、右焦點(diǎn)分別為,,過(guò)的直線與軸交于點(diǎn),線段與交于點(diǎn).若,則的方程為()A. B. C. D.10.已知橢圓的中心為原點(diǎn),為的左焦點(diǎn),為上一點(diǎn),滿足且,則橢圓的方程為()A. B. C. D.11.若關(guān)于的不等式有正整數(shù)解,則實(shí)數(shù)的最小值為()A. B. C. D.12.在三棱錐中,,且分別是棱,的中點(diǎn),下面四個(gè)結(jié)論:①;②平面;③三棱錐的體積的最大值為;④與一定不垂直.其中所有正確命題的序號(hào)是()A.①②③ B.②③④ C.①④ D.①②④二、填空題:本題共4小題,每小題5分,共20分。13.在中,角的對(duì)邊分別為,且.若為鈍角,,則的面積為____________.14.下表是關(guān)于青年觀眾的性別與是否喜歡綜藝“奔跑吧,兄弟”的調(diào)查數(shù)據(jù),人數(shù)如下表所示:不喜歡喜歡男性青年觀眾4010女性青年觀眾3080現(xiàn)要在所有參與調(diào)查的人中用分層抽樣的方法抽取個(gè)人做進(jìn)一步的調(diào)研,若在“不喜歡的男性青年觀眾”的人中抽取了8人,則的值為______.15.如圖,在矩形中,為邊的中點(diǎn),,,分別以、為圓心,為半徑作圓弧、(在線段上).由兩圓弧、及邊所圍成的平面圖形繞直線旋轉(zhuǎn)一周,則所形成的幾何體的體積為.16.已知函數(shù)圖象上一點(diǎn)處的切線方程為,則_______.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知直線l的極坐標(biāo)方程為,圓C的參數(shù)方程為(為參數(shù)).(1)請(qǐng)分別把直線l和圓C的方程化為直角坐標(biāo)方程;(2)求直線l被圓截得的弦長(zhǎng).18.(12分)已知矩陣,.求矩陣;求矩陣的特征值.19.(12分)某大型單位舉行了一次全體員工都參加的考試,從中隨機(jī)抽取了20人的分?jǐn)?shù).以下莖葉圖記錄了他們的考試分?jǐn)?shù)(以十位數(shù)字為莖,個(gè)位數(shù)字為葉):若分?jǐn)?shù)不低于95分,則稱該員工的成績(jī)?yōu)椤皟?yōu)秀”.(1)從這20人中任取3人,求恰有1人成績(jī)“優(yōu)秀”的概率;(2)根據(jù)這20人的分?jǐn)?shù)補(bǔ)全下方的頻率分布表和頻率分布直方圖,并根據(jù)頻率分布直方圖解決下面的問題.組別分組頻數(shù)頻率1234①估計(jì)所有員工的平均分?jǐn)?shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);②若從所有員工中任選3人,記表示抽到的員工成績(jī)?yōu)椤皟?yōu)秀”的人數(shù),求的分布列和數(shù)學(xué)期望.20.(12分)過(guò)點(diǎn)P(-4,0)的動(dòng)直線l與拋物線相交于D、E兩點(diǎn),已知當(dāng)l的斜率為時(shí),.(1)求拋物線C的方程;(2)設(shè)的中垂線在軸上的截距為,求的取值范圍.21.(12分)已知函數(shù),其中.(1)討論函數(shù)的零點(diǎn)個(gè)數(shù);(2)求證:.22.(10分)對(duì)于正整數(shù),如果個(gè)整數(shù)滿足,且,則稱數(shù)組為的一個(gè)“正整數(shù)分拆”.記均為偶數(shù)的“正整數(shù)分拆”的個(gè)數(shù)為均為奇數(shù)的“正整數(shù)分拆”的個(gè)數(shù)為.(Ⅰ)寫出整數(shù)4的所有“正整數(shù)分拆”;(Ⅱ)對(duì)于給定的整數(shù),設(shè)是的一個(gè)“正整數(shù)分拆”,且,求的最大值;(Ⅲ)對(duì)所有的正整數(shù),證明:;并求出使得等號(hào)成立的的值.(注:對(duì)于的兩個(gè)“正整數(shù)分拆”與,當(dāng)且僅當(dāng)且時(shí),稱這兩個(gè)“正整數(shù)分拆”是相同的.)

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】

結(jié)合分段函數(shù)的解析式,先求出,進(jìn)而可求出.【詳解】由題意可得,則.故選:C.【點(diǎn)睛】本題考查了求函數(shù)的值,考查了分段函數(shù)的性質(zhì),考查運(yùn)算求解能力,屬于基礎(chǔ)題.2、A【解析】

解出集合A和B即可求得兩個(gè)集合的并集.【詳解】∵集合{x∈Z|﹣2<x≤3}={﹣1,0,1,2,3},B={y∈N|y=x﹣1,x∈A}={﹣2,﹣1,0,1,2},∴A∪B={﹣2,﹣1,0,1,2,3}.故選:A.【點(diǎn)睛】此題考查求集合的并集,關(guān)鍵在于準(zhǔn)確求解不等式,根據(jù)描述法表示的集合,準(zhǔn)確寫出集合中的元素.3、B【解析】

利用換元法設(shè),則等價(jià)為有且只有一個(gè)實(shí)數(shù)根,分三種情況進(jìn)行討論,結(jié)合函數(shù)的圖象,求出的取值范圍.【詳解】解:設(shè),則有且只有一個(gè)實(shí)數(shù)根.當(dāng)時(shí),當(dāng)時(shí),,由即,解得,結(jié)合圖象可知,此時(shí)當(dāng)時(shí),得,則是唯一解,滿足題意;當(dāng)時(shí),此時(shí)當(dāng)時(shí),,此時(shí)函數(shù)有無(wú)數(shù)個(gè)零點(diǎn),不符合題意;當(dāng)時(shí),當(dāng)時(shí),,此時(shí)最小值為,結(jié)合圖象可知,要使得關(guān)于的方程有且只有一個(gè)實(shí)數(shù)根,此時(shí).綜上所述:或.故選:A.【點(diǎn)睛】本題考查了函數(shù)方程根的個(gè)數(shù)的應(yīng)用.利用換元法,數(shù)形結(jié)合是解決本題的關(guān)鍵.4、A【解析】

設(shè)等差數(shù)列的公差為,再利用基本量法與題中給的條件列式求解首項(xiàng)與公差,進(jìn)而求得即可.【詳解】設(shè)等差數(shù)列的公差為.由得,解得.所以.故選:A【點(diǎn)睛】本題主要考查了等差數(shù)列的基本量求解,屬于基礎(chǔ)題.5、D【解析】

設(shè)胡夫金字塔的底面邊長(zhǎng)為,由題可得,所以,該金字塔的側(cè)棱長(zhǎng)為,所以需要燈帶的總長(zhǎng)度約為,故選D.6、B【解析】

根據(jù)函數(shù)單調(diào)性逐項(xiàng)判斷即可【詳解】對(duì)A,由正弦函數(shù)的單調(diào)性知sina與sinb大小不確定,故錯(cuò)誤;對(duì)B,因?yàn)閥=cx為增函數(shù),且a>b,所以ca>cb,正確對(duì)C,因?yàn)閥=xc為增函數(shù),故,錯(cuò)誤;對(duì)D,因?yàn)樵跒闇p函數(shù),故,錯(cuò)誤故選B.【點(diǎn)睛】本題考查了不等式的基本性質(zhì)以及指數(shù)函數(shù)的單調(diào)性,屬基礎(chǔ)題.7、A【解析】

在中,設(shè),,,結(jié)合三角形的內(nèi)角和及和角的正弦公式化簡(jiǎn)可求,可得,再由已知條件求得,,,考慮建立以所在的直線為軸,以所在的直線為軸建立直角坐標(biāo)系,根據(jù)已知條件結(jié)合向量的坐標(biāo)運(yùn)算求得,然后利用基本不等式可求得的最小值.【詳解】在中,設(shè),,,,即,即,,,,,,,,即,又,,,則,所以,,解得,.以所在的直線為軸,以所在的直線為軸建立如下圖所示的平面直角坐標(biāo)系,則、、,為線段上的一點(diǎn),則存在實(shí)數(shù)使得,,設(shè),,則,,,,,消去得,,所以,,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,因此,的最小值為.故選:A.【點(diǎn)睛】本題是一道構(gòu)思非常巧妙的試題,綜合考查了三角形的內(nèi)角和定理、兩角和的正弦公式及基本不等式求解最值問題,解題的關(guān)鍵是理解是一個(gè)單位向量,從而可用、表示,建立、與參數(shù)的關(guān)系,解決本題的第二個(gè)關(guān)鍵點(diǎn)在于由,發(fā)現(xiàn)為定值,從而考慮利用基本不等式求解最小值,考查計(jì)算能力,屬于難題.8、A【解析】

先利用最高點(diǎn)縱坐標(biāo)求出A,再根據(jù)求出周期,再將代入求出φ的值.最后將代入解析式即可.【詳解】由圖象可知A=1,∵,所以T=π,∴.∴f(x)=sin(2x+φ),將代入得φ)=1,∴φ,結(jié)合0<φ,∴φ.∴.∴sin.故選:A.【點(diǎn)睛】本題考查三角函數(shù)的據(jù)圖求式問題以及三角函數(shù)的公式變換.據(jù)圖求式問題要注意結(jié)合五點(diǎn)法作圖求解.屬于中檔題.9、D【解析】

由題可得,所以,又,所以,得,故可得橢圓的方程.【詳解】由題可得,所以,又,所以,得,,所以橢圓的方程為.故選:D【點(diǎn)睛】本題主要考查了橢圓的定義,橢圓標(biāo)準(zhǔn)方程的求解.10、B【解析】由題意可得c=,設(shè)右焦點(diǎn)為F′,由|OP|=|OF|=|OF′|知,∠PFF′=∠FPO,∠OF′P=∠OPF′,所以∠PFF′+∠OF′P=∠FPO+∠OPF′,由∠PFF′+∠OF′P+∠FPO+∠OPF′=180°知,∠FPO+∠OPF′=90°,即PF⊥PF′.在Rt△PFF′中,由勾股定理,得|PF′|=,由橢圓定義,得|PF|+|PF′|=2a=4+8=12,從而a=6,得a2=36,于是b2=a2﹣c2=36﹣=16,所以橢圓的方程為.故選B.點(diǎn)睛:橢圓的定義:到兩定點(diǎn)距離之和為常數(shù)的點(diǎn)的軌跡,當(dāng)和大于兩定點(diǎn)間的距離時(shí),軌跡是橢圓,當(dāng)和等于兩定點(diǎn)間的距離時(shí),軌跡是線段(兩定點(diǎn)間的連線段),當(dāng)和小于兩定點(diǎn)間的距離時(shí),軌跡不存在.11、A【解析】

根據(jù)題意可將轉(zhuǎn)化為,令,利用導(dǎo)數(shù),判斷其單調(diào)性即可得到實(shí)數(shù)的最小值.【詳解】因?yàn)椴坏仁接姓麛?shù)解,所以,于是轉(zhuǎn)化為,顯然不是不等式的解,當(dāng)時(shí),,所以可變形為.令,則,∴函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,而,所以當(dāng)時(shí),,故,解得.故選:A.【點(diǎn)睛】本題主要考查不等式能成立問題的解法,涉及到對(duì)數(shù)函數(shù)的單調(diào)性的應(yīng)用,構(gòu)造函數(shù)法的應(yīng)用,導(dǎo)數(shù)的應(yīng)用等,意在考查學(xué)生的轉(zhuǎn)化能力,屬于中檔題.12、D【解析】

①通過(guò)證明平面,證得;②通過(guò)證明,證得平面;③求得三棱錐體積的最大值,由此判斷③的正確性;④利用反證法證得與一定不垂直.【詳解】設(shè)的中點(diǎn)為,連接,則,,又,所以平面,所以,故①正確;因?yàn)?,所以平面,故②正確;當(dāng)平面與平面垂直時(shí),最大,最大值為,故③錯(cuò)誤;若與垂直,又因?yàn)?,所以平面,所以,又,所以平面,所以,因?yàn)椋燥@然與不可能垂直,故④正確.故選:D【點(diǎn)睛】本小題主要考查空間線線垂直、線面平行、幾何體體積有關(guān)命題真假性的判斷,考查空間想象能力和邏輯推理能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

轉(zhuǎn)化為,利用二倍角公式可求解得,結(jié)合余弦定理可得b,再利用面積公式可得解.【詳解】因?yàn)椋裕忠驗(yàn)?,且為銳角,所以.由余弦定理得,即,解得,所以故答案為:【點(diǎn)睛】本題考查了正弦定理和余弦定理的綜合應(yīng)用,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.14、32【解析】

由已知可得抽取的比例,計(jì)算出所有被調(diào)查的人數(shù),再乘以抽取的比例即為分層抽樣的樣本容量.【詳解】由題可知,抽取的比例為,被調(diào)查的總?cè)藬?shù)為人,則分層抽樣的樣本容量是人.故答案為:32【點(diǎn)睛】本題考查分層抽樣中求樣本容量,屬于基礎(chǔ)題.15、【解析】由題意,可得所得到的幾何體是由一個(gè)圓柱挖去兩個(gè)半球而成;其中,圓柱的底面半徑為1,母線長(zhǎng)為2;體積為;兩個(gè)半球的半徑都為1,則兩個(gè)半球的體積為;則所求幾何體的體積為.考點(diǎn):旋轉(zhuǎn)體的組合體.16、1【解析】

求出導(dǎo)函數(shù),由切線方程得切線斜率和切點(diǎn)坐標(biāo),從而可求得.【詳解】由題意,∵函數(shù)圖象在點(diǎn)處的切線方程為,∴,解得,∴.故答案為:1.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義,求出導(dǎo)函數(shù)是解題基礎(chǔ),三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1).x2+y2=1.(2)16【解析】

(1)直接利用極坐標(biāo)方程和參數(shù)方程公式化簡(jiǎn)得到答案.(2)圓心到直線的距離為,故弦長(zhǎng)為得到答案.【詳解】(1),即,即,即.,故.(2)圓心到直線的距離為,故弦長(zhǎng)為.【點(diǎn)睛】本題考查了極坐標(biāo)方程和參數(shù)方程,圓的弦長(zhǎng),意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力.18、;,.【解析】

由題意,可得,利用矩陣的知識(shí)求解即可.矩陣的特征多項(xiàng)式為,令,求出矩陣的特征值.【詳解】設(shè)矩陣,則,所以,解得,,,,所以矩陣;矩陣的特征多項(xiàng)式為,令,解得,,即矩陣的兩個(gè)特征值為,.【點(diǎn)睛】本題考查矩陣的知識(shí)點(diǎn),屬于??碱}.19、(1);(2)①82,②分布列見解析,【解析】

(1)從20人中任取3人共有種結(jié)果,恰有1人成績(jī)“優(yōu)秀”共有種結(jié)果,利用古典概型的概率計(jì)算公式計(jì)算即可;(2)①平均數(shù)的估計(jì)值為各小矩形的組中值與其面積乘積的和;②要注意服從的是二項(xiàng)分布,不是超幾何分布,利用二項(xiàng)分布的分布列及期望公式求解即可.【詳解】(1)設(shè)從20人中任取3人恰有1人成績(jī)“優(yōu)秀”為事件,則,所以,恰有1人“優(yōu)秀”的概率為.(2)組別分組頻數(shù)頻率120.01260.03380.04440.02①,估計(jì)所有員工的平均分為82②的可能取值為0、1、2、3,隨機(jī)選取1人是“優(yōu)秀”的概率為,∴;;;;∴的分布列為0123∵,∴數(shù)學(xué)期望.【點(diǎn)睛】本題考查古典概型的概率計(jì)算以及二項(xiàng)分布期望的問題,涉及到頻率分布直方圖、平均數(shù)的估計(jì)值等知識(shí),是一道容易題.20、;【解析】

根據(jù)題意,求出直線方程并與拋物線方程聯(lián)立,利用韋達(dá)定理,結(jié)合,即可求出拋物線C的方程;設(shè),的中點(diǎn)為,把直線l方程與拋物線方程聯(lián)立,利用判別式求出的取值范圍,利用韋達(dá)定理求出,進(jìn)而求出的中垂線方程,即可求得在軸上的截距的表達(dá)式,然后根據(jù)的取值范圍求解即可.【詳解】由題意可知,直線l的方程為,與拋物線方程方程聯(lián)立可得,,設(shè),由韋達(dá)定理可得,,因?yàn)?,所以,解得,所以拋物線C的方程為;設(shè),的中點(diǎn)為,由,消去可得,所以判別式,解得或,由韋達(dá)定理可得,,所以的中垂線方程為,令則,因?yàn)榛?所以即為所求.【點(diǎn)睛】本題考查拋物線的標(biāo)準(zhǔn)方程和直線與拋物線的位置關(guān)系,考查向量知識(shí)的運(yùn)用;考查學(xué)生分析問題、解決問題的能力和運(yùn)算求解能力;屬于中檔題.21、(1)時(shí),有一個(gè)零點(diǎn);當(dāng)且時(shí),有兩個(gè)零點(diǎn);(2)見解析【解析】

(1)利用的導(dǎo)函數(shù),求得的最大值的表達(dá)式,對(duì)進(jìn)行分類討論,由此判斷出的零點(diǎn)的個(gè)數(shù).(2)由,得到和,構(gòu)造函數(shù),利用導(dǎo)數(shù)證得,即有,從而證得,即

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論