版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆上海閔行區(qū)高三3月份模擬考試數(shù)學(xué)試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫(xiě)在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫(xiě)清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知正項(xiàng)等比數(shù)列中,存在兩項(xiàng),使得,,則的最小值是()A. B. C. D.2.已知某幾何體的三視圖如圖所示,則該幾何體的體積是()A. B.64 C. D.323.函數(shù)的定義域?yàn)?,集合,則()A. B. C. D.4.設(shè)分別為雙曲線的左、右焦點(diǎn),過(guò)點(diǎn)作圓的切線,與雙曲線的左、右兩支分別交于點(diǎn),若,則雙曲線漸近線的斜率為()A. B. C. D.5.若函數(shù)的圖象過(guò)點(diǎn),則它的一條對(duì)稱(chēng)軸方程可能是()A. B. C. D.6.二項(xiàng)式的展開(kāi)式中只有第六項(xiàng)的二項(xiàng)式系數(shù)最大,則展開(kāi)式中的常數(shù)項(xiàng)是()A.180 B.90 C.45 D.3607.設(shè)是虛數(shù)單位,則()A. B. C. D.8.下列與函數(shù)定義域和單調(diào)性都相同的函數(shù)是()A. B. C. D.9.拋物線的焦點(diǎn)為,則經(jīng)過(guò)點(diǎn)與點(diǎn)且與拋物線的準(zhǔn)線相切的圓的個(gè)數(shù)有()A.1個(gè) B.2個(gè) C.0個(gè) D.無(wú)數(shù)個(gè)10.某四棱錐的三視圖如圖所示,記為此棱錐所有棱的長(zhǎng)度的集合,則().A.,且 B.,且C.,且 D.,且11.我國(guó)宋代數(shù)學(xué)家秦九韶(1202-1261)在《數(shù)書(shū)九章》(1247)一書(shū)中提出“三斜求積術(shù)”,即:以少?gòu)V求之,以小斜冪并大斜冪減中斜冪,余半之,自乘于上;以小斜冪乘大斜冪減上,余四約之,為實(shí);一為從隅,開(kāi)平方得積.其實(shí)質(zhì)是根據(jù)三角形的三邊長(zhǎng),,求三角形面積,即.若的面積,,,則等于()A. B. C.或 D.或12.已知函數(shù)的值域?yàn)?,函?shù),則的圖象的對(duì)稱(chēng)中心為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知向量,且,則實(shí)數(shù)的值是__________.14.六位同學(xué)坐在一排,現(xiàn)讓六位同學(xué)重新坐,恰有兩位同學(xué)坐自己原來(lái)的位置,則不同的坐法有________種(用數(shù)字回答).15.若函數(shù)(R,)滿足,且的最小值等于,則ω的值為_(kāi)__________.16.已知雙曲線的左右焦點(diǎn)分別為,過(guò)的直線與雙曲線左支交于兩點(diǎn),,的內(nèi)切圓的圓心的縱坐標(biāo)為,則雙曲線的離心率為_(kāi)_______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù).(Ⅰ)求在點(diǎn)處的切線方程;(Ⅱ)已知在上恒成立,求的值.(Ⅲ)若方程有兩個(gè)實(shí)數(shù)根,且,證明:.18.(12分)已知三棱錐P-ABC(如圖一)的平面展開(kāi)圖(如圖二)中,四邊形ABCD為邊長(zhǎng)等于的正方形,和均為正三角形,在三棱錐P-ABC中:(1)證明:平面平面ABC;(2)若點(diǎn)M在棱PA上運(yùn)動(dòng),當(dāng)直線BM與平面PAC所成的角最大時(shí),求直線MA與平面MBC所成角的正弦值.19.(12分)已知公差不為零的等差數(shù)列的前n項(xiàng)和為,,是與的等比中項(xiàng).(1)求;(2)設(shè)數(shù)列滿足,,求數(shù)列的通項(xiàng)公式.20.(12分)已知函數(shù),.(1)若函數(shù)在上單調(diào)遞減,且函數(shù)在上單調(diào)遞增,求實(shí)數(shù)的值;(2)求證:(,且).21.(12分)如圖,在斜三棱柱中,平面平面,,,,均為正三角形,E為AB的中點(diǎn).(Ⅰ)證明:平面;(Ⅱ)求斜三棱柱截去三棱錐后剩余部分的體積.22.(10分)已知分別是橢圓的左、右焦點(diǎn),直線與交于兩點(diǎn),,且.(1)求的方程;(2)已知點(diǎn)是上的任意一點(diǎn),不經(jīng)過(guò)原點(diǎn)的直線與交于兩點(diǎn),直線的斜率都存在,且,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
由已知求出等比數(shù)列的公比,進(jìn)而求出,嘗試用基本不等式,但取不到等號(hào),所以考慮直接取的值代入比較即可.【詳解】,,或(舍).,,.當(dāng),時(shí);當(dāng),時(shí);當(dāng),時(shí),,所以最小值為.故選:C.【點(diǎn)睛】本題考查等比數(shù)列通項(xiàng)公式基本量的計(jì)算及最小值,屬于基礎(chǔ)題.2、A【解析】
根據(jù)三視圖,還原空間幾何體,即可得該幾何體的體積.【詳解】由該幾何體的三視圖,還原空間幾何體如下圖所示:可知該幾何體是底面在左側(cè)的四棱錐,其底面是邊長(zhǎng)為4的正方形,高為4,故.故選:A【點(diǎn)睛】本題考查了三視圖的簡(jiǎn)單應(yīng)用,由三視圖還原空間幾何體,棱錐體積的求法,屬于基礎(chǔ)題.3、A【解析】
根據(jù)函數(shù)定義域得集合,解對(duì)數(shù)不等式得到集合,然后直接利用交集運(yùn)算求解.【詳解】解:由函數(shù)得,解得,即;又,解得,即,則.故選:A.【點(diǎn)睛】本題考查了交集及其運(yùn)算,考查了函數(shù)定義域的求法,是基礎(chǔ)題.4、C【解析】
如圖所示:切點(diǎn)為,連接,作軸于,計(jì)算,,,,根據(jù)勾股定理計(jì)算得到答案.【詳解】如圖所示:切點(diǎn)為,連接,作軸于,,故,在中,,故,故,,根據(jù)勾股定理:,解得.故選:.【點(diǎn)睛】本題考查了雙曲線的漸近線斜率,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.5、B【解析】
把已知點(diǎn)坐標(biāo)代入求出,然后驗(yàn)證各選項(xiàng).【詳解】由題意,,或,,不妨取或,若,則函數(shù)為,四個(gè)選項(xiàng)都不合題意,若,則函數(shù)為,只有時(shí),,即是對(duì)稱(chēng)軸.故選:B.【點(diǎn)睛】本題考查正弦型復(fù)合函數(shù)的對(duì)稱(chēng)軸,掌握正弦函數(shù)的性質(zhì)是解題關(guān)鍵.6、A【解析】試題分析:因?yàn)榈恼归_(kāi)式中只有第六項(xiàng)的二項(xiàng)式系數(shù)最大,所以,,令,則,.考點(diǎn):1.二項(xiàng)式定理;2.組合數(shù)的計(jì)算.7、A【解析】
利用復(fù)數(shù)的乘法運(yùn)算可求得結(jié)果.【詳解】由復(fù)數(shù)的乘法法則得.故選:A.【點(diǎn)睛】本題考查復(fù)數(shù)的乘法運(yùn)算,考查計(jì)算能力,屬于基礎(chǔ)題.8、C【解析】
分析函數(shù)的定義域和單調(diào)性,然后對(duì)選項(xiàng)逐一分析函數(shù)的定義域、單調(diào)性,由此確定正確選項(xiàng).【詳解】函數(shù)的定義域?yàn)?,在上為減函數(shù).A選項(xiàng),的定義域?yàn)?,在上為增函?shù),不符合.B選項(xiàng),的定義域?yàn)?,不符?C選項(xiàng),的定義域?yàn)?,在上為減函數(shù),符合.D選項(xiàng),的定義域?yàn)?,不符?故選:C【點(diǎn)睛】本小題主要考查函數(shù)的定義域和單調(diào)性,屬于基礎(chǔ)題.9、B【解析】
圓心在的中垂線上,經(jīng)過(guò)點(diǎn),且與相切的圓的圓心到準(zhǔn)線的距離與到焦點(diǎn)的距離相等,圓心在拋物線上,直線與拋物線交于2個(gè)點(diǎn),得到2個(gè)圓.【詳解】因?yàn)辄c(diǎn)在拋物線上,又焦點(diǎn),,由拋物線的定義知,過(guò)點(diǎn)、且與相切的圓的圓心即為線段的垂直平分線與拋物線的交點(diǎn),這樣的交點(diǎn)共有2個(gè),故過(guò)點(diǎn)、且與相切的圓的不同情況種數(shù)是2種.故選:.【點(diǎn)睛】本題主要考查拋物線的簡(jiǎn)單性質(zhì),本題解題的關(guān)鍵是求出圓心的位置,看出圓心必須在拋物線上,且在垂直平分線上.10、D【解析】
首先把三視圖轉(zhuǎn)換為幾何體,根據(jù)三視圖的長(zhǎng)度,進(jìn)一步求出個(gè)各棱長(zhǎng).【詳解】根據(jù)幾何體的三視圖轉(zhuǎn)換為幾何體為:該幾何體為四棱錐體,如圖所示:所以:,,.故選:D..【點(diǎn)睛】本題考查三視圖和幾何體之間的轉(zhuǎn)換,主要考查運(yùn)算能力和轉(zhuǎn)換能力及思維能力,屬于基礎(chǔ)題.11、C【解析】
將,,,代入,解得,再分類(lèi)討論,利用余弦弦定理求,再用平方關(guān)系求解.【詳解】已知,,,代入,得,即,解得,當(dāng)時(shí),由余弦弦定理得:,.當(dāng)時(shí),由余弦弦定理得:,.故選:C【點(diǎn)睛】本題主要考查余弦定理和平方關(guān)系,還考查了對(duì)數(shù)學(xué)史的理解能力,屬于基礎(chǔ)題.12、B【解析】
由值域?yàn)榇_定的值,得,利用對(duì)稱(chēng)中心列方程求解即可【詳解】因?yàn)?,又依題意知的值域?yàn)?,所以得,,所以,令,得,則的圖象的對(duì)稱(chēng)中心為.故選:B【點(diǎn)睛】本題考查三角函數(shù)的圖像及性質(zhì),考查函數(shù)的對(duì)稱(chēng)中心,重點(diǎn)考查值域的求解,易錯(cuò)點(diǎn)是對(duì)稱(chēng)中心縱坐標(biāo)錯(cuò)寫(xiě)為0二、填空題:本題共4小題,每小題5分,共20分。13、【解析】∵=(1,2),=(x,1),則=+2=(1,2)+2(x,1)=(1+2x,4),=2﹣=2(1,2)﹣(x,1)=(2﹣x,3),∵∴3(1+2x)﹣4(2﹣x)=1,解得:x=.點(diǎn)睛:由向量的數(shù)乘和坐標(biāo)加減法運(yùn)算求得,然后利用向量共線的坐標(biāo)表示列式求解x的值.若=(a1,a2),=(b1,b2),則⊥?a1a2+b1b2=1,∥?a1b2﹣a2b1=1.14、135【解析】
根據(jù)題意先確定2個(gè)人位置不變,共有種選擇,再確定4個(gè)人坐4個(gè)位置,但是不能坐原來(lái)的位置,計(jì)算得到答案.【詳解】根據(jù)題意先確定2個(gè)人位置不變,共有種選擇.再確定4個(gè)人坐4個(gè)位置,但是不能坐原來(lái)的位置,共有種選擇,故不同的坐法有.故答案為:.【點(diǎn)睛】本題考查了分步乘法原理,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.15、1【解析】
利用輔助角公式化簡(jiǎn)可得,由題可分析的最小值等于表示相鄰的一個(gè)對(duì)稱(chēng)中心與一個(gè)對(duì)稱(chēng)軸的距離為,進(jìn)而求解即可.【詳解】由題,,因?yàn)?,且的最小值等于,即相鄰的一個(gè)對(duì)稱(chēng)中心與一個(gè)對(duì)稱(chēng)軸的距離為,所以,即,所以,故答案為:1【點(diǎn)睛】本題考查正弦型函數(shù)的對(duì)稱(chēng)性的應(yīng)用,考查三角函數(shù)的化簡(jiǎn).16、2【解析】
由題意畫(huà)出圖形,設(shè)內(nèi)切圓的圓心為,圓分別切于,可得四邊形為正方形,再由圓的切線的性質(zhì)結(jié)臺(tái)雙曲線的定義,求得的內(nèi)切圓的圓心的縱坐標(biāo),結(jié)合已知列式,即可求得雙曲線的離心率.【詳解】設(shè)內(nèi)切圓的圓心為,圓分別切于,連接,則,故四邊形為正方形,邊長(zhǎng)為圓的半徑,由,,得,與重合,,,即——①,——②聯(lián)立①②解得:,又因圓心的縱坐標(biāo)為,.故答案為:【點(diǎn)睛】本題考查雙曲線的幾何性質(zhì),考查數(shù)形結(jié)合思想與運(yùn)算求解能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(Ⅰ);(Ⅱ);(Ⅲ)證明見(jiàn)解析【解析】
(Ⅰ)根據(jù)導(dǎo)數(shù)的幾何意義求解即可.(Ⅱ)求導(dǎo)分析函數(shù)的單調(diào)性,并構(gòu)造函數(shù)根據(jù)單調(diào)性分析可得只能在處取得最小值求解即可.(Ⅲ)根據(jù)(Ⅰ)(Ⅱ)的結(jié)論可知,在上恒成立,再分別設(shè)的解為、.再根據(jù)不等式的性質(zhì)證明即可.【詳解】(Ⅰ)由題,故.且.故在點(diǎn)處的切線方程為.(Ⅱ)設(shè)恒成立,故.設(shè)函數(shù)則,故在上單調(diào)遞減且,又在上單調(diào)遞增.又,即且,故只能在處取得最小值,當(dāng)時(shí),此時(shí),且在上,單調(diào)遞減.在上,單調(diào)遞增.故,滿足題意;當(dāng)時(shí),此時(shí)有解,且在上單調(diào)遞減,與矛盾;當(dāng)時(shí),此時(shí)有解,且在上單調(diào)遞減,與矛盾;故(Ⅲ).由(Ⅰ),在上單調(diào)遞減且,又在上單調(diào)遞增,故最多一根.又因?yàn)?,故設(shè)的解為,因?yàn)?故.所以在遞減,在遞增.因?yàn)榉匠逃袃蓚€(gè)實(shí)數(shù)根,故.結(jié)合(Ⅰ)(Ⅱ)有,在上恒成立.設(shè)的解為,則;設(shè)的解為,則.故,.故,得證.【點(diǎn)睛】本題主要考查了導(dǎo)數(shù)的幾何意義以及根據(jù)函數(shù)的單調(diào)性與最值求解參數(shù)值的問(wèn)題.同時(shí)也考查了構(gòu)造函數(shù)結(jié)合前問(wèn)的結(jié)論證明不等式的方法.屬于難題.18、(1)見(jiàn)解析(2)【解析】
(1)設(shè)的中點(diǎn)為,連接.由展開(kāi)圖可知,,.為的中點(diǎn),則有,根據(jù)勾股定理可證得,則平面,即可證得平面平面.(2)由線面成角的定義可知是直線與平面所成的角,且,最大即為最短時(shí),即是的中點(diǎn)建立空間直角坐標(biāo)系,求出與平面的法向量利用公式即可求得結(jié)果.【詳解】(1)設(shè)AC的中點(diǎn)為O,連接BO,PO.由題意,得,,.在中,,O為AC的中點(diǎn),,在中,,,,,.,平面,平面ABC,平面PAC,平面平面ABC.(2)由(1)知,,,平面PAC,是直線BM與平面PAC所成的角,且,當(dāng)OM最短時(shí),即M是PA的中點(diǎn)時(shí),最大.由平面ABC,,,,于是以O(shè)C,OB,OD所在直線分別為x軸,y軸,z軸建立如圖示空間直角坐標(biāo)系,則,,設(shè)平面MBC的法向量為,直線MA與平面MBC所成角為,則由得:.令,得,,即.則.直線MA與平面MBC所成角的正弦值為.【點(diǎn)睛】本題考查面面垂直的證明,考查線面成角問(wèn)題,借助空間向量是解決線面成角問(wèn)題的關(guān)鍵,難度一般.19、(1);(2).【解析】
(1)根據(jù)題意,建立首項(xiàng)和公差的方程組,通過(guò)基本量即可寫(xiě)出前項(xiàng)和;(2)由(1)中所求,結(jié)合累加法求得.【詳解】(1)由題意可得即又因?yàn)?,所以,所?(2)由條件及(1)可得.由已知得,所以.又滿足上式,所以【點(diǎn)睛】本題考查等差數(shù)列通項(xiàng)公式和前項(xiàng)和的基本量的求解,涉及利用累加法求通項(xiàng)公式,屬綜合基礎(chǔ)題.20、(1)1;(2)見(jiàn)解析【解析】
(1)分別求得與的導(dǎo)函數(shù),由導(dǎo)函數(shù)與單調(diào)性關(guān)系即可求得的值;(2)由(1)可知當(dāng)時(shí),,當(dāng)時(shí),,因而,構(gòu)造,由對(duì)數(shù)運(yùn)算及不等式放縮可證明,從而不等式可證明.【詳解】(1)∵函數(shù)在上單調(diào)遞減,∴,即在上恒成立,∴,又∵函數(shù)在上單調(diào)遞增,∴,即在上恒成立,,∴綜上可知,.(2)證明:由(1)知,當(dāng)時(shí),函數(shù)在上為減函數(shù),在上為增函數(shù),而,∴當(dāng)時(shí),,當(dāng)時(shí),.∴∴即,∴.【點(diǎn)睛】本題考查了導(dǎo)數(shù)與函數(shù)單調(diào)性關(guān)系,放縮法在證明不等式中的應(yīng)用,屬于難題.21、(Ⅰ)見(jiàn)解析;(Ⅱ)【解析】
(Ⅰ)要證明線面平行,需先證明線線平行,所以連接,交于點(diǎn)M,連接ME,證明;(Ⅱ)由題意可知點(diǎn)到平面ABC的距離等于點(diǎn)到平面ABC的距離,根據(jù)體積公式剩余部分的體積是.【詳解】(Ⅰ)如圖,連接,交于點(diǎn)M,連接ME,則.因?yàn)槠矫?,平面,所以平面.(Ⅱ)因?yàn)槠矫鍭BC,所以點(diǎn)到平面ABC的距離等于點(diǎn)到平面ABC的距離.如圖,設(shè)O是AC的中點(diǎn),連接,OB.因?yàn)闉檎切?,所以,又平面平面,平面平面,所以平面ABC.所以點(diǎn)到平面ABC的距離,故三棱錐的體積為.而斜三棱柱的體積為.所以剩余部分的體積為.【點(diǎn)睛】本題考查證明線面平行,計(jì)算體積,意在考查推理
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 跆拳道360°轉(zhuǎn)身橫踢腿法 說(shuō)課稿-2024-2025學(xué)年高一上學(xué)期體育與健康人教版必修第一冊(cè)
- 全國(guó)浙教版信息技術(shù)高中選修2新授課 第一節(jié) 多媒體數(shù)據(jù)文件 說(shuō)課稿
- 2023-2024學(xué)年人教版高中信息技術(shù)必修二第二章第一節(jié)《 信息系統(tǒng)的組成與功能》說(shuō)課稿
- 二零二五年度環(huán)保產(chǎn)業(yè)承包商借款合同范本3篇
- 習(xí)作:看圖畫(huà)寫(xiě)一寫(xiě) 說(shuō)課稿-2023-2024學(xué)年統(tǒng)編版語(yǔ)文三年級(jí)下冊(cè)
- 定向越野 說(shuō)課稿-2024-2025學(xué)年高一上學(xué)期體育與健康人教版必修第一冊(cè)
- 第三單元習(xí)作指導(dǎo)課《我來(lái)編童話》說(shuō)課稿-2024-2025學(xué)年統(tǒng)編版語(yǔ)文三年級(jí)上冊(cè)
- 10-大家的“朋友”(說(shuō)課稿)2023-2024學(xué)年統(tǒng)編版道德與法治三年級(jí)下冊(cè)
- 2025年度設(shè)備租賃合同標(biāo)的為機(jī)器一臺(tái)2篇
- Module 10 Unit 2 Sam had lots of chocolate.(說(shuō)課稿)-2023-2024學(xué)年外研版(三起)英語(yǔ)四年級(jí)下冊(cè)
- 小學(xué)二年級(jí)100以?xún)?nèi)進(jìn)退位加減法800道題
- 2025年1月普通高等學(xué)校招生全國(guó)統(tǒng)一考試適應(yīng)性測(cè)試(八省聯(lián)考)語(yǔ)文試題
- 《立式輥磨機(jī)用陶瓷金屬?gòu)?fù)合磨輥輥套及磨盤(pán)襯板》編制說(shuō)明
- 保險(xiǎn)公司2025年工作總結(jié)與2025年工作計(jì)劃
- 育肥牛購(gòu)銷(xiāo)合同范例
- 暨南大學(xué)珠海校區(qū)財(cái)務(wù)辦招考財(cái)務(wù)工作人員管理單位遴選500模擬題附帶答案詳解
- DB51-T 2944-2022 四川省社會(huì)組織建設(shè)治理規(guī)范
- 2024北京初三(上)期末英語(yǔ)匯編:材料作文
- 市委組織部副部長(zhǎng)任職表態(tài)發(fā)言
- HXD1D客運(yùn)電力機(jī)車(chē)轉(zhuǎn)向架培訓(xùn)教材
- 超星爾雅學(xué)習(xí)通【西方文論原典導(dǎo)讀(吉林大學(xué))】章節(jié)測(cè)試附答案
評(píng)論
0/150
提交評(píng)論