版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
BasicconceptsofPVTcollector
technologies,
applicationsandmarkets
IEASHCTASK60|PVTSYSTEMS
BasicconceptsofPVT
collectortechnologies,
applicationsandmarkets
SHCTask60/ReportD5
Authors:ManuelL?mmle,FraunhoferISE,Germany
MaríaHerrando,UniversityofZaragoza,SpainGlenRyan,Sunovate,Australia
Contributors:LaetitiaBrottier,DualSun,France;MatteoChiappa,Solink,Italy;CorrydeKeizer,TNO,
Netherlands;AlejandrodelAmo,Abora,Spain;AlexanderFriedrich,3FSolar,Austria;AntonioGagliano,
UniversitàdiCatania,Italy;JoaoGomes,Solarus,Sweden;AndreasH?berle,HSRHochschulefürTechnikRapperswil,Switzerland;EricHawkins,Speedflex,UK;DannyJonas,Universit?tdesSaarlandes,Germany;KorbinianKramer,FraunhoferISE,Germany;UlrichLeibfried,Consolar,Germany;AlexanderMellor,NakedEnergy,UK;IlijaNasov,CamelSolar,Macedonia;ThomasNoll,easy-tnt,Germany;MarcoPelligrini,
UniversityofBologna,Italy;FernandoPerez,Abora,Spain;MarkusPr?ll,ZAEBayerne.V.,Germany;NielsRadisch,Ramboll,Denmark;DavidSauter,ZHAW,Switzerland;IonnaisSifnaios,DTU,Denmark;DanjanaTheis,HTWSaar,Germany;DanielZenh?usern,SPF,Switzerland
Date:May1st,2020
ReportnumberD5DOI:10.18777/ieashc-task60-2020-0002
Coverphoto:PVTcollectorsattheNewTownHallFreiburg?ManuelL?mmle/FraunhoferISE
ThecontentsofthisreportdonotnecessarilyreflecttheviewpointsorpoliciesoftheInternationalEnergyAgency(IEA)oritsmembercountries,theIEASolarHeatingandCoolingTechnologyCollaboration
Programme(SHCTCP)membersortheparticipatingresearchers.
IEASolarHeatingandCoolingTechnologyCollaborationProgramme(IEASHC)
TheSolarHeatingandCoolingTechnologyCollaborationProgrammewasfoundedin1977asoneofthefirst
multilateraltechnologyinitiatives("ImplementingAgreements")oftheInternationalEnergyAgency.Itsmissionis
“Toenhancecollectiveknowledgeandapplicationofsolarheatingandcoolingthroughinternationalcollaborationtoreachthegoalsetinthevisionofsolarthermalenergymeeting50%oflowtemperatureheatingandcooling
demandby2050.”
ThemembersoftheIEASHCcollaborateonprojects(referredtoasTasks)inthefieldofresearch,development,demonstration(RD&D),andtestmethodsforsolarthermalenergyandsolarbuildings.
ResearchtopicsandtheassociatedTasksinparenthesisinclude:
□SolarSpaceHeatingandWaterHeating(Tasks14,19,26,44,54)
□SolarCooling(Tasks25,38,48,53)
□SolarHeatforIndustrialorAgriculturalProcesses(Tasks29,33,49,62,64)
□SolarDistrictHeating(Tasks7,45,55)
□SolarBuildings/Architecture/UrbanPlanning(Tasks8,11,12,13,20,22,23,28,37,40,41,47,51,52,56,59,63)
□SolarThermal&PV(Tasks16,35,60)
□Daylighting/Lighting(Tasks21,31,50,61)
□Materials/ComponentsforSolarHeatingandCooling(Tasks2,3,6,10,18,27,39)
□Standards,Certification,andTestMethods(Tasks14,24,34,43,57)
□ResourceAssessment(Tasks1,4,5,9,17,36,46)
□StorageofSolarHeat(Tasks7,32,42,58)
InadditiontoourTaskwork,otheractivitiesoftheIEASHCincludeour:
InternationalConferenceonSolarHeatingandCoolingforBuildingsandIndustry
SHCSolarAcademy
SolarHeatWorldwideannualstaticsreport
Collaborationwithsolarthermaltradeassociations
CountryMembers
Australia
France
SouthAfrica
Austria
Germany
Spain
Belgium
Italy
Sweden
Canada
Netherlands
Switzerland
China
Norway
Turkey
Denmark
Portugal
UnitedKingdom
EuropeanCommission
Slovakia
SponsorMembers
EuropeanCopperInstitute
ECREEE
InternationalSolarEnergySociety
PCREEE
CCREEE
RCREEE
EACREEE
SACREEE
FormoreinformationontheIEASHCwork,includingmanyfreepublications,pleasevisit
Preface
TheaimofthisreportistoprovideasummaryofthecurrentstateofthePVTcollectortechnologies,applications,andmarkets.
ThecontentsofthisreporthavebeenusedtoupdateandenhanceaWikipediaarticleonPVTinordertobetterinformonPVTawideaudience.Therefore,themainstructureandsomeliteralfragmentsofthecurrentWikipediaarereused.InsteadofcitingtheliteralfragmentsoftheoldWikipediaarticleinthemaintext,weincludedtheoldarticleinappendixandmarkedthefragmentsthatwerereused.
Contents
Preface iii
Contents iv
1PVTcollectorsandtheirrangeofoperation 1
1.1Introduction 1
1.2PVTmarkets 2
1.3PVTcollectortechnologies 2
1.3.1ClassificationofPVTcollectors 3
1.3.2PVTliquidcollector 4
1.3.3PVTaircollector 4
1.3.4UncoveredPVTcollector(WISC) 5
1.3.5CoveredPVTcollector 5
1.3.6ConcentratingPVTcollector(CPVT) 5
1.4PVTapplicationsbytemperaturerange 6
2AreviewofPVTapplicationsandsystems 8
2.1Solarheatingsystems 8
2.1.1Processheat 8
2.1.2Domestichotwaterheating 8
2.1.3Spaceheating 8
2.1.4Swimmingpool 9
2.1.5Heatpumpsource 9
2.2Solarcoolingandsolarcombinedcoolingheatingandpowersystems 9
2.3Solarindustrialprocesses 10
2.3.1Solarwaterdesalinationandsolarstills 10
2.3.2Agro-Industrialprocesses 10
2.4References 10
3AssessmentofthemarketpotentialofPVTcollectors 14
Appendix1-ExpertsurveyontemperaturerangesforPVTcollectortechnologiesandapplications 15
Appendix2-MarkedversionoftheoriginalWikipediaarticlefrom16.03.2019 18
3.1Introduction 18
3.2Contents 19
3.3PV/Tsystemengineering 19
3.4Systemtypes 19
3.4.1PV/Tliquidcollector 19
3.4.2PV/Taircollector 19
3.4.3PV/Tconcentrator(CPVT) 20
3.5Seealso 20
3.6References 20
Page1
BasicconceptsofPVTcollectortechnologies,applicationsandmarkets
1PVTcollectorsandtheirrangeofoperation
1.1Introduction
Photovoltaicthermalcollectors,typicallyabbreviatedasPVTcollectorsandalsoknownashybridsolarcollectors,hybridphotovoltaicthermalsolarcollectors,PV/Tcollectorsorsolarcogenerationsystems,arepowergenerationtechnologiesthatconvertsolarradiationintousablethermalandelectricalenergy.PVTcollectorscombinephotovoltaicsolarcells,whichconvertsunlightintoelectricity,withasolarthermalcollector,whichtransferstheotherwiseunusedexcessheatfromthePVmoduletoaheattransferfluid.Bycombiningelectricityandheatgenerationwithinthesamecomponent,thesetechnologiescanreachahigheroverallefficiencythansolarphotovoltaic(PV)orsolarthermalalone.1
SignificantresearchhasgoneintodevelopingadiverserangeofPVTtechnologiessincethe1970s.2ThedifferentPVTcollectortechnologiesdiffersubstantiallyintheircollectordesignandheattransferfluidandaddressdifferentapplicationsrangingfromlowtemperatureheatingandcoolinguptohightemperatureheatabove100°C.3
Figure1.14:SchematiccrosssectionofaWISC(Windandinfraredsensitivecollector)PVTcollectorwithsheet-and-tubetypeheatexchangerandrearinsulation:
1-PVmodulecoverglass(e.g.anti-reflective)
2-Encapsulant(e.g.EVA)
3-SolarPVcells
4-Encapsulant(e.g.EVA)
5-Backsheet(e.g.PVF)
6-Heatexchanger(e.g.aluminum,copperorpolymers)
7-Thermalinsulation(e.g.mineralwool),notalwayspresentforWISCcollectors.
1Zenh?usern,Daniel,EvelynBamberger,andAleksisBaggenstos.2017.?PVTWrap-Up:EnergySystemswithPhotovoltaic-ThermalSolarCollectors?.Rapperswil,Switzerland:publishedbyEnergieSchweiz.
http://www.spf.ch/fileadmin/daten/publ/PVT_WrapUp_Final_EN.pdf
2Chow,T.T.(2010)."Areviewonphotovoltaic/thermalhybridsolartechnology".AppliedEnergy.87(2):365-379.doi:10.1016/j.apenergy.2009.06.037.
3Zondag,H.A.;Bakker,M.;vanHelden,W.G.J.(2006):PVTRoadmap-AEuropeanguideforthedevelopmentandmarketintroductionofPV-Thermaltechnology.
4ImagebyManuelL?mmle-Ownwork,CCBY-SA4.0,
/w/index.php?curid=88267419
Page2
1.2PVTmarkets
PVTcollectorsgeneratesolarheatandelectricitybasicallyfreeofdirectCO2emissionsandarethereforeregardedasapromisingtechnologytosupplyrenewableelectricityandheatand/orcoldtobuildingsandindustrialprocesses.
Heatisthelargestenergyend-use.In2015,theprovisionofheatingforitsuseinbuildings,industrialpurposesandotherapplicationsaccountedforaround52%(205EJ)ofthetotalenergyconsumed.5Ofthis,overhalfwasusedintheindustryandaround46%inthebuildingsector.While72%oftheheatwasprovidedbythedirectcombustionoffossilfuels,only7%ofwasfrommodernrenewablessuchassolarthermal,biofuelorgeothermal.6Thelowgradeheatmarketupto150°Cisestimatedtobe26.8%oftheworldwidefinalenergydemand,whichiscurrentlyservicedbyfossilfuels(gas,oil,andcoal),electricityandrenewableheat.Thisisthesumofindustrydemand7.1%(25.5EJ)7andbuildingdemand19.7%(49.0EJresidentialand13.6EJcommercial)8.
Theelectricitydemandinbuildingsandindustryisexpectedtogrowfurtherduetoongoingelectrificationandsectorcoupling.9Forasignificantreductionofcarbonemissions,itisessentialthatthemajorshareofelectricityissourcedfromrenewableenergysources,suchaswind,solar,biomassandwater.
Themarketforrenewableheatandelectricityisthereforevast,illustratingthemarketpotentialofPVTcollectors.
Thereport“SolarHeatWorldwide”assessedtheglobalmarketofPVTcollectorsin2018.Accordingtotheauthors,thetotalareaofinstalledcollectorsamountedto1.08millionsquaremeters.Uncoveredwatercollectorshadthelargestmarketshare(57%),followedbyaircollectors(41%)andcoveredwatercollectors(2%).ThecountrywiththelargestinstalledcapacitywasFrance(41%),followedbyKorea(26%),China(12%)andGermany(10%).10
1.3PVTcollectortechnologies
PVTcollectorscombinethegenerationofsolarelectricityandheatinasinglecomponent,andthusachieveahigheroverallefficiencyandbetterutilizationofthesolarspectrumthanconventionalPVmodules.
Photovoltaiccellstypicallyreachanelectricalefficiencybetween15%and20%,whilethelargestshareofthesolarspectrum(65%-70%)isconvertedintoheat,increasingthetemperatureofPVmodulesasillustratedinFigure2.PVTcollectors,onthecontrary,areengineeredtotransferheatfromthePVcellstoafluid.Inthisway,thisexcessheatismadeusefulandcanbeutilizedtoheatwaterorasalowtemperaturesourceforheatpumps,forexample.Thus,PVTcollectorsmakebetteruseofthesolarspectrum.1
Byco-generatingsolarelectricityandheatinasinglecomponent,PVTcollectorsincreasethecombinedefficiencyandyieldanoptimizedutilizationofavailablespace.Especiallyindenselypopulatedurbanareas,PVTcollectorsareconsideredapromisingtechnologyforincreasingtheusageofvaluableroofandfacadespace.
Mostphotovoltaiccells(e.g.siliconbased)sufferfromadropinefficiencywithincreasedcelltemperatures.EachKelvinofincreasedcelltemperaturereducestheefficiencyby0.2–0.5%.3RemovingheatfromthePVcellscan
5Collier,Ute(2018),IEAInsightsSeries2018:RenewableHeatPolicies,Figure1,
/download/direct/1030
6Collier,Ute(2018),IEAInsightsSeries2018:RenewableHeatPolicies,Figure2,
/download/direct/1030
7Philibert,Cedric2017,IEARenewableEnergyforIndustryFromgreenenergytogreenmaterialsandfuels,Figure3,
/download/direct/1025?fileName=Insights_series_2017_Renewable_Energy_for_Industry.pdf
8Dianaürge-Vorsatz,Heatingandcoolingenergytrendsanddriversinbuildings,Figure3,
/10.1016/j.rser.2014.08.039
9IRENA(2019):GlobalEnergyTransformation:ARoadmapto2050(2019Edition).InternationalRenewableEnergyAgency,AbuDhabi.
/-/media/Files/IRENA/Agency/Publication/2019/Apr/IRENA_Global_Energy_Transformation_2019.pdf
.
10Weiss,Werner;Sp?rk-Dür,Monika(2019):SolarHeatWorldwide-GlobalMarketDevelopmentandTrendsin2018-
DetailedmarketFigures2017,
/Data/Sites/1/publications/Solar-Heat-Worldwide-2019.pdf
.
Page3
BasicconceptsofPVTcollectortechnologies,applicationsandmarkets
thereforelowertheirtemperatureandthusincreasethecells’efficiency.ImprovedPVcelllifetimesareanotherbenefitofloweroperationtemperatures.
ThefunctionandenergeticbenefitofaPVTcollectorcanbedescribedcomprehensivelybyindicatingthe
electricalandthermalgainsinasolarspectrum(Figure1.2).Itisalsoforthisreason,thatIEASHCTask60usesthesolarspectrumaspartofitslogo.
Figure1.2:UtilizationoftheelectromagneticsolarspectrumbyaPVTcollector.11
Figure1.2isbasedontheoriginaldiagrambyDupeyrat(2011)12,whichwasupdatedwithrecentefficiencydataanddetailedopticalmeasurements(compareL?mmle(2018)13):
?SolarirradiancerepresentstheglobalAM1.5spectrumaccordingtoASTMG173-03(2012)14withanoverallirradiancedensityofG=1000W/m2.
?TheopticallossesarecalculatedbasedonmeasuredreflectanceandtransmittancespectraofaPVmodulewithp-Sisolarcells,solarglassandwithoutanti-reflectivecoating.TheopticalmeasurementswereconductedatFraunhoferISEwithaspectrometerusinganUlbrichtsphere.
?Theelectricitygainsarecalculatedbasedonthemeasurementsofthespectralresponseofac-SisolarcellwithanelectricalefficiencyofηSTC=15%.
?Theheatgainsarecalculatedbasedontheassumptionofathermalefficiencyofηth,0=61%,astypicallyfoundinunglazedorglazedPVTcollectorswithattheoperatingconditionsofTfluid,mean=Tambient.
?Heatlossesaccountfortheremainderofthesolarspectrum,asheatlosses,anditsspectraldistribution,cannotbemeasureddirectly.
Accordingly,thesolarirradiancerepresents100%oftheAM1.5spectrum,opticallossesaccountfor9%,heatlossesfor15%,heatgainsfor61%,andelectricitygainsfor15%.
1.3.1ClassificationofPVTcollectors
11ImagebyManuelL?mmle-Ownwork,CCBY-SA4.0,
/w/index.php?curid=87526248
12Dupeyrat,Patrick(2011):ExperimentaldevelopmentandsimulationinvestigationofaPhotovoltaic-Thermalhybridsolarcollector.INSAdeLyon,France.L’InstitutNationaldesSciencesAppliquéesdeLyon.
13L?mmle,Manuel(2018):ThermalmanagementofPVTcollectors-developmentandmodellingofhighlyefficientPVTcollectorswithlow-emissivitycoatingsandoverheatingprotection.In:PhDthesis,FraunhoferISE,INATECHAlbert-Ludwigs-Universit?tFreiburg.DOI:10.6094/UNIFR/16446.
14ASTMG173-03(2012)-StandardTablesforReferenceSolarSpectralIrradiances:DirectNormalandHemisphericalon37°TiltedSurface.
/solar//spectra/am1.5/
Page4
ThereareamultitudeoftechnicalpossibilitiestocombinePVcellsandsolarthermalcollectors.AnumberofPVTcollectorsareavailableascommercialproducts,whichcanbedividedintothefollowingcategoriesaccordingtotheirbasicdesignandheattransferfluid:
?PVTliquidcollector
?PVTaircollector
Inadditiontotheclassificationbyheattransferfluid,PVTcollectorscanalsobecategorizedaccordingtothepresenceofasecondaryglazingtoreduceheatlossesandthepresenceofadevicetoconcentratesolarirradiation.
?UncoveredPVTcollector(WISCPVT)
?CoveredPVTcollector
?ConcentratingPVTcollector(CPVT)
Moreover,PVTcollectorscanbeclassifiedaccordingtotheirdesign,suchascelltechnology,typeoffluid,heatexchangermaterialandgeometry,typeofcontactbetweenfluidandPVmodule,fixationofheatexchanger,orlevelofbuildingintegration(buildingintegratedPVT
(BIPVT)collectors).1,
15
ThedesignandtypeofPVTcollectorsalwaysimpliesacertainadaptiontooperatingtemperatures,applications,andgivingprioritytoeitherheatorelectricitygeneration.Forinstance,operatingthePVTcollectoratlowtemperatureleadstoacoolingeffectofPVcellscomparedtoPVmodulesandthereforeanincreaseofelectricalpower.However,theheatalsohastobeutilizedatlowtemperatures.
ThemaximumoperatingtemperaturesformostPVmodulesarelimitedtolessthanthemaximumcertifiedoperationtemperatures(typically85°C).Nevertheless,twoormoreunitsofthermalenergyaregeneratedforeachunitofelectricalenergy,dependingoncellefficiencyandsystemdesign.
1.3.2PVTliquidcollector
Thebasicwater-cooleddesignuseschannelstodirectfluidflowusingpipingattacheddirectlyorindirectlytothebackofaPVmodule.Inastandardfluid-basedsystem,aworkingfluid,typicallywater,glycolormineraloil,circulatesintheheatexchangerbehindthePVcells.TheheatfromthePVcellsisconductedthroughthemetalandistransferredtotheworkingfluid(presumingthattheworkingfluidiscoolerthantheoperatingtemperatureofthecells).
1.3.3PVTaircollector
Thebasicair-cooleddesignuseseitherahollow,conductivehousingtomountthephotovoltaicpanelsoracontrolledflowofairtotherearfaceofthePVpanel.PVTaircollectorseitherdrawinfreshoutsideairoruseairasacirculatingheattransfermediuminaclosedloop.TheheattransferpropertiesofairarelowerthanthatoftypicallyusedliquidsandthereforerequiresaproportionallyhighermassflowratethananequivalentPVTliquidcollector.Theadvantageisthattheinfrastructurerequiredhaslowercostandcomplexity.
TheheatedairiscirculatedintoabuildingHVACsystemtodeliverthermalenergy.Excessheatgeneratedcanbesimplyventedtotheatmosphere.SomeversionsofthePVTaircollectorcanbeoperatedinawaytocoolthePVpanelstogeneratemoreelectricityandassistwithreducingthermaleffectsonlifetimeperformancedegradation.
AnumberofdifferentconfigurationsofPVTaircollectorsexist,whichvaryinengineeringsophistication.PVTaircollectorconfigurationsrangefromabasicenclosedshallowmetalboxwithanintakeandexhaustuptooptimizedheattransfersurfacesthatachieveuniformpanelheattransferacrossawiderangeofprocessandambientconditions.
PVTaircollectorscanbecarriedoutasuncoveredorcovereddesigns
.1
15L.Brottier(2018).Optimisationbiénergied’unpanneausolairemultifonctionnel:ducapteurauxinstallationsinsitu.Mécanique[physics.med-ph].UniversitéParis-Saclay,2019
.https://tel.archives-ouvertes.fr/tel-02133891
Page5
BasicconceptsofPVTcollectortechnologies,applicationsandmarkets
1.3.4UncoveredPVTcollector(WISC)
UncoveredPVTcollectors,alsodenotedasunglazedorwindand/orinfraredsensitivePVTcollectors(WISC),typicallycompriseofaPVmodulewithaheatexchangerstructureattachedtothebackofthePVmodule.WhilemostPVTcollectorsareprefabricatedunits,someproductsareofferedasheatexchangerstoberetrofittedtooff-the-shelfPVmodules.Inbothcases,agoodandlongtimedurablethermalcontactwithahighheattransfercoefficientbetweenthePVcellsandthefluidisessential.16
TherearsideoftheuncoveredPVTcollectorcanbeequippedwiththermalinsulation(e.g.mineralwoolorfoam)toreduceheatlossesoftheheatedfluid.UninsulatedPVTcollectorsarebeneficialforoperationnearandbelowambienttemperatures.ParticularlyuncoveredPVTcollectorswithincreasedheattransfertoambientairareasuitableheatsourceforheatpumpsystems.Whenthetemperatureintheheatpump’ssourceislowerthantheambient,thefluidcanbeheateduptoambienttemperatureeveninperiodswithoutsunshine.
Accordingly,uncoveredPVTcollectorscanbecategorizedinto:
?UncoveredPVTcollectorwithincreasedheattransfertoambientair
?UncoveredPVTcollectorwithoutrearinsulation
?UncoveredPVTcollectorwithrearinsulation
UncoveredPVTcollectorsarealsousedtoproviderenewablecoolingbydissipatingheatviathePVTcollectortotheambientairorbyutilizingtheradiativecoolingeffect.Indoingso,coldairorwaterisharnessed,whichcanbeutilizedforHVACapplications.
1.3.5CoveredPVTcollector
Covered,orglazedPVTcollectors,featureanadditionalglazing,whichenclosesaninsulatingairlayerbetweenthePVmoduleandthesecondaryglazing.Thisreducesheatlossesandincreasesthethermalefficiency.Moreover,coveredPVTcollectorscanreachsignificantlyhighertemperaturesthanPVmodulesoruncoveredPVTcollectors.Theoperatingtemperaturesmostlydependonthetemperatureoftheworkingfluid.Theaveragefluidtemperaturecanbebetween25°Cinswimmingpoolapplicationsto90°Cinsolarcoolingsystems(Figure3).
CoveredPVTcollectorsresembletheformanddesignofconventionalflatplatecollectorsorevacuatedvacuumtubes.Yet,PVcellsinsteadofspectrally-selectiveabsorbercoatingsabsorbtheincidentsolarirradianceandgenerateanelectricalcurrentinadditiontosolarheat.
Theinsulatingcharacteristicsofthefrontcoverincreasethethermalefficiencyandallowforhigheroperatingtemperatures.However,theadditionalopticalinterfacesincreaseopticalreflectionsandthusreducethegeneratedelectricalpower.Anti-reflectivecoatingsonthefrontglazingcanreducetheadditionalopticallosses.17
1.3.6ConcentratingPVTcollector(CPVT)
Aconcentratorsystemhastheadvantagetoreducethephotovoltaic(PV)cellareaneeded.ThereforeitispossibletousemoreexpensiveandefficientPVcells,e.g.multi-junctionphotovoltaiccells.TheconcentrationofsunlightalsoreducestheamountofhotPV-absorberareaandthereforereducesheatlossestotheambient,whichimprovessignificantlytheefficiencyforhigherapplicationtemperatures.
ConcentratorsystemsoftenrequirereliablecontrolsystemstoaccuratelytrackthesunandtoprotectthePVcellsfromdamagingover-temperatureconditions.However,therearealsostationeryPVTcollectortypesthatusenon-imagingreflectors,suchastheCompoundParabolicConcentrator(CPC),anddonothavetotrackthesun.
16Adam,Mario;Kramer,Korbinian;Fritzsche,Ulrich;Hamberger,Stephan(2014):AbschlussberichtPVT-Norm.F?rderkennzeichen01FS12035-?Verbundprojekt:StandardisierungundNormungvonmultifunktionalenPVTSolarkollektoren(PVT-Norm)“.
17Zondag,H.A.(2008):Flat-platePV-Thermalcollectorsandsystems:Areview.In:RenewableandSustainableEnergyReviews12(4),S.891–959.
Page6
Underidealconditions,about75%ofthesun'spowerdirectlyincidentuponsuchsystemscanbegatheredaselectricityandheat.Formoredetails,seethediscussionofCPVTwithinthearticleforconcentratedphotovoltaics.
Alimitationofhigh-concentrator(i.e.HCPVandHCPVT)systemsisthattheymaintaintheirlong-termadvantagesoverconventionalc-Si/mc-Sicollectorsonlyinregionsthatremainconsistentlyfreeofatmosphericaerosolcontaminants(e.g.lightclouds,smog,etc.).Powerproductionisrapidlydegradedbecause1)radiationisreflectedandscatteredoutsideofthesmall(oftenlessthan1°-2°)acceptanceangleofthecollectionoptics,and2)absorptionofspecificcomponentsofthesolarspectrumcausesoneormoreseriesjunctionswithintheMJcellstounderperform.Theshort-termimpactsofsuchpowergenerationirregularitiescanbereducedtosomedegreebyincludingelectricalandthermalstorageinthesystem.
1.4PVTapplicationsbytemperaturerange
TherangeofapplicationsofPVTcollectors,andingeneralsolarthermalcollectors,canbedividedaccordingtotheirtemperaturelevels:18
?lowtemperatureapplicationsupto50°C
?mediumtemperatureapplicationsupto80°C
?hightemperatureapplicationsabove80°C
Lowtemperatureapplicationsincludeheatpumpsystemsandheatingswimmingpoolsorspasupto50°C.PVTcollectorsinheatpumpsystemsacteitheraslowtemperaturesourcefortheheatpumpevaporatororontheloadsidetosupplymediumtemperatureheattoastoragetank.Moreover,regenerationofboreholesandgroundsourceheatexchangersispossible.1UncoveredPVTcollectorswithenhancedair-to-waterheatexchangecanevencomprisetheonlysourceofaheatpumpsystem.IncombinationwithasystemarchitectureallowingtostorecoldproducedwithWISCoraircollectors,alsoairconditioningispossible.
Lowandmediumtemperatureapplicationsforspaceheatinganddomestichotwaterprovisionarefoundinbuildings,withtemperaturesfrom20°Cto80°C.Thetemperaturesofthespecificsystemdependontherequirementsoftheheatsupplysystemfordomestichotwater(e.g.freshwaterstation,temperaturerequirementsforlegionellaprevention)andforspaceheating(e.g.underfloorheating,radiators).Moreover,thePVTcollectorarraycanbedimensionedtocoveronlysmallerfractionsoftheheatdemand(e.g.hotwaterpre-heating),thusreducingoperatingtemperaturesofthePVTcollector.
Processheatincludesadiverserangeofindustrialapplicationswithlowtohightemperaturerequirements(e.g.solarwaterdesalination,solarcooling,orpowergenerationwithconcentratingPVTcollectors).19PVTcollectortechnologiescanbeclusteredaccordingtotheirtemperaturelevelinthesameway:thesuitabilitypertemperaturerangedependsonthePVTcollectordesignandtechnology.Therefore,eachPVTcollectortechnologyfeaturesdifferentoptimaltemperatureranges.
Figure3showstypicaltemperaturerangesofbothPVTapplicationsandcollectortechnologies.20TheoperatingtemperatureofthePVTapplicationsultimatelydefinesthesuitabilityofeachtypeofPVTcollectortechnology.
18KalogirouSA(2014).Solarenergyengineering:processesandsystems.SecondEdition.AcademicPres
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度物業(yè)費減免與物業(yè)設施維護保養(yǎng)合同
- 二零二五年度新型LED樓體亮化推廣合同3篇
- 2025年度足浴行業(yè)員工勞動合同與技能競賽激勵
- 2025年度影視劇本導演開發(fā)合同
- 2025年度車輛置換與二手車鑒定評估合同
- 二零二五年度廚房改造工程設計與施工監(jiān)理合同3篇
- 二零二五年度特色美食街租賃管理合同
- 二零二五年度新材料研發(fā)團隊試用期勞動合同范本
- 2025年度泥水施工施工現(xiàn)場臨時用電合同2篇
- 2025年度企業(yè)高管職務晉升與薪酬調(diào)整合同模板
- 小王子-英文原版
- 給排水科學與工程基礎知識單選題100道及答案解析
- 新版中國食物成分表
- 2024年山東省青島市中考生物試題(含答案)
- 河道綜合治理工程技術投標文件
- 專題24 短文填空 選詞填空 2024年中考英語真題分類匯編
- 再生障礙性貧血課件
- 產(chǎn)后抑郁癥的護理查房
- 2024年江蘇護理職業(yè)學院高職單招(英語/數(shù)學/語文)筆試歷年參考題庫含答案解析
- 電能質(zhì)量與安全課件
- 工程項目設計工作管理方案及設計優(yōu)化措施
評論
0/150
提交評論