版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
BasicconceptsofPVTcollector
technologies,
applicationsandmarkets
IEASHCTASK60|PVTSYSTEMS
BasicconceptsofPVT
collectortechnologies,
applicationsandmarkets
SHCTask60/ReportD5
Authors:ManuelL?mmle,FraunhoferISE,Germany
MaríaHerrando,UniversityofZaragoza,SpainGlenRyan,Sunovate,Australia
Contributors:LaetitiaBrottier,DualSun,France;MatteoChiappa,Solink,Italy;CorrydeKeizer,TNO,
Netherlands;AlejandrodelAmo,Abora,Spain;AlexanderFriedrich,3FSolar,Austria;AntonioGagliano,
UniversitàdiCatania,Italy;JoaoGomes,Solarus,Sweden;AndreasH?berle,HSRHochschulefürTechnikRapperswil,Switzerland;EricHawkins,Speedflex,UK;DannyJonas,Universit?tdesSaarlandes,Germany;KorbinianKramer,FraunhoferISE,Germany;UlrichLeibfried,Consolar,Germany;AlexanderMellor,NakedEnergy,UK;IlijaNasov,CamelSolar,Macedonia;ThomasNoll,easy-tnt,Germany;MarcoPelligrini,
UniversityofBologna,Italy;FernandoPerez,Abora,Spain;MarkusPr?ll,ZAEBayerne.V.,Germany;NielsRadisch,Ramboll,Denmark;DavidSauter,ZHAW,Switzerland;IonnaisSifnaios,DTU,Denmark;DanjanaTheis,HTWSaar,Germany;DanielZenh?usern,SPF,Switzerland
Date:May1st,2020
ReportnumberD5DOI:10.18777/ieashc-task60-2020-0002
Coverphoto:PVTcollectorsattheNewTownHallFreiburg?ManuelL?mmle/FraunhoferISE
ThecontentsofthisreportdonotnecessarilyreflecttheviewpointsorpoliciesoftheInternationalEnergyAgency(IEA)oritsmembercountries,theIEASolarHeatingandCoolingTechnologyCollaboration
Programme(SHCTCP)membersortheparticipatingresearchers.
IEASolarHeatingandCoolingTechnologyCollaborationProgramme(IEASHC)
TheSolarHeatingandCoolingTechnologyCollaborationProgrammewasfoundedin1977asoneofthefirst
multilateraltechnologyinitiatives("ImplementingAgreements")oftheInternationalEnergyAgency.Itsmissionis
“Toenhancecollectiveknowledgeandapplicationofsolarheatingandcoolingthroughinternationalcollaborationtoreachthegoalsetinthevisionofsolarthermalenergymeeting50%oflowtemperatureheatingandcooling
demandby2050.”
ThemembersoftheIEASHCcollaborateonprojects(referredtoasTasks)inthefieldofresearch,development,demonstration(RD&D),andtestmethodsforsolarthermalenergyandsolarbuildings.
ResearchtopicsandtheassociatedTasksinparenthesisinclude:
□SolarSpaceHeatingandWaterHeating(Tasks14,19,26,44,54)
□SolarCooling(Tasks25,38,48,53)
□SolarHeatforIndustrialorAgriculturalProcesses(Tasks29,33,49,62,64)
□SolarDistrictHeating(Tasks7,45,55)
□SolarBuildings/Architecture/UrbanPlanning(Tasks8,11,12,13,20,22,23,28,37,40,41,47,51,52,56,59,63)
□SolarThermal&PV(Tasks16,35,60)
□Daylighting/Lighting(Tasks21,31,50,61)
□Materials/ComponentsforSolarHeatingandCooling(Tasks2,3,6,10,18,27,39)
□Standards,Certification,andTestMethods(Tasks14,24,34,43,57)
□ResourceAssessment(Tasks1,4,5,9,17,36,46)
□StorageofSolarHeat(Tasks7,32,42,58)
InadditiontoourTaskwork,otheractivitiesoftheIEASHCincludeour:
InternationalConferenceonSolarHeatingandCoolingforBuildingsandIndustry
SHCSolarAcademy
SolarHeatWorldwideannualstaticsreport
Collaborationwithsolarthermaltradeassociations
CountryMembers
Australia
France
SouthAfrica
Austria
Germany
Spain
Belgium
Italy
Sweden
Canada
Netherlands
Switzerland
China
Norway
Turkey
Denmark
Portugal
UnitedKingdom
EuropeanCommission
Slovakia
SponsorMembers
EuropeanCopperInstitute
ECREEE
InternationalSolarEnergySociety
PCREEE
CCREEE
RCREEE
EACREEE
SACREEE
FormoreinformationontheIEASHCwork,includingmanyfreepublications,pleasevisit
Preface
TheaimofthisreportistoprovideasummaryofthecurrentstateofthePVTcollectortechnologies,applications,andmarkets.
ThecontentsofthisreporthavebeenusedtoupdateandenhanceaWikipediaarticleonPVTinordertobetterinformonPVTawideaudience.Therefore,themainstructureandsomeliteralfragmentsofthecurrentWikipediaarereused.InsteadofcitingtheliteralfragmentsoftheoldWikipediaarticleinthemaintext,weincludedtheoldarticleinappendixandmarkedthefragmentsthatwerereused.
Contents
Preface iii
Contents iv
1PVTcollectorsandtheirrangeofoperation 1
1.1Introduction 1
1.2PVTmarkets 2
1.3PVTcollectortechnologies 2
1.3.1ClassificationofPVTcollectors 3
1.3.2PVTliquidcollector 4
1.3.3PVTaircollector 4
1.3.4UncoveredPVTcollector(WISC) 5
1.3.5CoveredPVTcollector 5
1.3.6ConcentratingPVTcollector(CPVT) 5
1.4PVTapplicationsbytemperaturerange 6
2AreviewofPVTapplicationsandsystems 8
2.1Solarheatingsystems 8
2.1.1Processheat 8
2.1.2Domestichotwaterheating 8
2.1.3Spaceheating 8
2.1.4Swimmingpool 9
2.1.5Heatpumpsource 9
2.2Solarcoolingandsolarcombinedcoolingheatingandpowersystems 9
2.3Solarindustrialprocesses 10
2.3.1Solarwaterdesalinationandsolarstills 10
2.3.2Agro-Industrialprocesses 10
2.4References 10
3AssessmentofthemarketpotentialofPVTcollectors 14
Appendix1-ExpertsurveyontemperaturerangesforPVTcollectortechnologiesandapplications 15
Appendix2-MarkedversionoftheoriginalWikipediaarticlefrom16.03.2019 18
3.1Introduction 18
3.2Contents 19
3.3PV/Tsystemengineering 19
3.4Systemtypes 19
3.4.1PV/Tliquidcollector 19
3.4.2PV/Taircollector 19
3.4.3PV/Tconcentrator(CPVT) 20
3.5Seealso 20
3.6References 20
Page1
BasicconceptsofPVTcollectortechnologies,applicationsandmarkets
1PVTcollectorsandtheirrangeofoperation
1.1Introduction
Photovoltaicthermalcollectors,typicallyabbreviatedasPVTcollectorsandalsoknownashybridsolarcollectors,hybridphotovoltaicthermalsolarcollectors,PV/Tcollectorsorsolarcogenerationsystems,arepowergenerationtechnologiesthatconvertsolarradiationintousablethermalandelectricalenergy.PVTcollectorscombinephotovoltaicsolarcells,whichconvertsunlightintoelectricity,withasolarthermalcollector,whichtransferstheotherwiseunusedexcessheatfromthePVmoduletoaheattransferfluid.Bycombiningelectricityandheatgenerationwithinthesamecomponent,thesetechnologiescanreachahigheroverallefficiencythansolarphotovoltaic(PV)orsolarthermalalone.1
SignificantresearchhasgoneintodevelopingadiverserangeofPVTtechnologiessincethe1970s.2ThedifferentPVTcollectortechnologiesdiffersubstantiallyintheircollectordesignandheattransferfluidandaddressdifferentapplicationsrangingfromlowtemperatureheatingandcoolinguptohightemperatureheatabove100°C.3
Figure1.14:SchematiccrosssectionofaWISC(Windandinfraredsensitivecollector)PVTcollectorwithsheet-and-tubetypeheatexchangerandrearinsulation:
1-PVmodulecoverglass(e.g.anti-reflective)
2-Encapsulant(e.g.EVA)
3-SolarPVcells
4-Encapsulant(e.g.EVA)
5-Backsheet(e.g.PVF)
6-Heatexchanger(e.g.aluminum,copperorpolymers)
7-Thermalinsulation(e.g.mineralwool),notalwayspresentforWISCcollectors.
1Zenh?usern,Daniel,EvelynBamberger,andAleksisBaggenstos.2017.?PVTWrap-Up:EnergySystemswithPhotovoltaic-ThermalSolarCollectors?.Rapperswil,Switzerland:publishedbyEnergieSchweiz.
http://www.spf.ch/fileadmin/daten/publ/PVT_WrapUp_Final_EN.pdf
2Chow,T.T.(2010)."Areviewonphotovoltaic/thermalhybridsolartechnology".AppliedEnergy.87(2):365-379.doi:10.1016/j.apenergy.2009.06.037.
3Zondag,H.A.;Bakker,M.;vanHelden,W.G.J.(2006):PVTRoadmap-AEuropeanguideforthedevelopmentandmarketintroductionofPV-Thermaltechnology.
4ImagebyManuelL?mmle-Ownwork,CCBY-SA4.0,
/w/index.php?curid=88267419
Page2
1.2PVTmarkets
PVTcollectorsgeneratesolarheatandelectricitybasicallyfreeofdirectCO2emissionsandarethereforeregardedasapromisingtechnologytosupplyrenewableelectricityandheatand/orcoldtobuildingsandindustrialprocesses.
Heatisthelargestenergyend-use.In2015,theprovisionofheatingforitsuseinbuildings,industrialpurposesandotherapplicationsaccountedforaround52%(205EJ)ofthetotalenergyconsumed.5Ofthis,overhalfwasusedintheindustryandaround46%inthebuildingsector.While72%oftheheatwasprovidedbythedirectcombustionoffossilfuels,only7%ofwasfrommodernrenewablessuchassolarthermal,biofuelorgeothermal.6Thelowgradeheatmarketupto150°Cisestimatedtobe26.8%oftheworldwidefinalenergydemand,whichiscurrentlyservicedbyfossilfuels(gas,oil,andcoal),electricityandrenewableheat.Thisisthesumofindustrydemand7.1%(25.5EJ)7andbuildingdemand19.7%(49.0EJresidentialand13.6EJcommercial)8.
Theelectricitydemandinbuildingsandindustryisexpectedtogrowfurtherduetoongoingelectrificationandsectorcoupling.9Forasignificantreductionofcarbonemissions,itisessentialthatthemajorshareofelectricityissourcedfromrenewableenergysources,suchaswind,solar,biomassandwater.
Themarketforrenewableheatandelectricityisthereforevast,illustratingthemarketpotentialofPVTcollectors.
Thereport“SolarHeatWorldwide”assessedtheglobalmarketofPVTcollectorsin2018.Accordingtotheauthors,thetotalareaofinstalledcollectorsamountedto1.08millionsquaremeters.Uncoveredwatercollectorshadthelargestmarketshare(57%),followedbyaircollectors(41%)andcoveredwatercollectors(2%).ThecountrywiththelargestinstalledcapacitywasFrance(41%),followedbyKorea(26%),China(12%)andGermany(10%).10
1.3PVTcollectortechnologies
PVTcollectorscombinethegenerationofsolarelectricityandheatinasinglecomponent,andthusachieveahigheroverallefficiencyandbetterutilizationofthesolarspectrumthanconventionalPVmodules.
Photovoltaiccellstypicallyreachanelectricalefficiencybetween15%and20%,whilethelargestshareofthesolarspectrum(65%-70%)isconvertedintoheat,increasingthetemperatureofPVmodulesasillustratedinFigure2.PVTcollectors,onthecontrary,areengineeredtotransferheatfromthePVcellstoafluid.Inthisway,thisexcessheatismadeusefulandcanbeutilizedtoheatwaterorasalowtemperaturesourceforheatpumps,forexample.Thus,PVTcollectorsmakebetteruseofthesolarspectrum.1
Byco-generatingsolarelectricityandheatinasinglecomponent,PVTcollectorsincreasethecombinedefficiencyandyieldanoptimizedutilizationofavailablespace.Especiallyindenselypopulatedurbanareas,PVTcollectorsareconsideredapromisingtechnologyforincreasingtheusageofvaluableroofandfacadespace.
Mostphotovoltaiccells(e.g.siliconbased)sufferfromadropinefficiencywithincreasedcelltemperatures.EachKelvinofincreasedcelltemperaturereducestheefficiencyby0.2–0.5%.3RemovingheatfromthePVcellscan
5Collier,Ute(2018),IEAInsightsSeries2018:RenewableHeatPolicies,Figure1,
/download/direct/1030
6Collier,Ute(2018),IEAInsightsSeries2018:RenewableHeatPolicies,Figure2,
/download/direct/1030
7Philibert,Cedric2017,IEARenewableEnergyforIndustryFromgreenenergytogreenmaterialsandfuels,Figure3,
/download/direct/1025?fileName=Insights_series_2017_Renewable_Energy_for_Industry.pdf
8Dianaürge-Vorsatz,Heatingandcoolingenergytrendsanddriversinbuildings,Figure3,
/10.1016/j.rser.2014.08.039
9IRENA(2019):GlobalEnergyTransformation:ARoadmapto2050(2019Edition).InternationalRenewableEnergyAgency,AbuDhabi.
/-/media/Files/IRENA/Agency/Publication/2019/Apr/IRENA_Global_Energy_Transformation_2019.pdf
.
10Weiss,Werner;Sp?rk-Dür,Monika(2019):SolarHeatWorldwide-GlobalMarketDevelopmentandTrendsin2018-
DetailedmarketFigures2017,
/Data/Sites/1/publications/Solar-Heat-Worldwide-2019.pdf
.
Page3
BasicconceptsofPVTcollectortechnologies,applicationsandmarkets
thereforelowertheirtemperatureandthusincreasethecells’efficiency.ImprovedPVcelllifetimesareanotherbenefitofloweroperationtemperatures.
ThefunctionandenergeticbenefitofaPVTcollectorcanbedescribedcomprehensivelybyindicatingthe
electricalandthermalgainsinasolarspectrum(Figure1.2).Itisalsoforthisreason,thatIEASHCTask60usesthesolarspectrumaspartofitslogo.
Figure1.2:UtilizationoftheelectromagneticsolarspectrumbyaPVTcollector.11
Figure1.2isbasedontheoriginaldiagrambyDupeyrat(2011)12,whichwasupdatedwithrecentefficiencydataanddetailedopticalmeasurements(compareL?mmle(2018)13):
?SolarirradiancerepresentstheglobalAM1.5spectrumaccordingtoASTMG173-03(2012)14withanoverallirradiancedensityofG=1000W/m2.
?TheopticallossesarecalculatedbasedonmeasuredreflectanceandtransmittancespectraofaPVmodulewithp-Sisolarcells,solarglassandwithoutanti-reflectivecoating.TheopticalmeasurementswereconductedatFraunhoferISEwithaspectrometerusinganUlbrichtsphere.
?Theelectricitygainsarecalculatedbasedonthemeasurementsofthespectralresponseofac-SisolarcellwithanelectricalefficiencyofηSTC=15%.
?Theheatgainsarecalculatedbasedontheassumptionofathermalefficiencyofηth,0=61%,astypicallyfoundinunglazedorglazedPVTcollectorswithattheoperatingconditionsofTfluid,mean=Tambient.
?Heatlossesaccountfortheremainderofthesolarspectrum,asheatlosses,anditsspectraldistribution,cannotbemeasureddirectly.
Accordingly,thesolarirradiancerepresents100%oftheAM1.5spectrum,opticallossesaccountfor9%,heatlossesfor15%,heatgainsfor61%,andelectricitygainsfor15%.
1.3.1ClassificationofPVTcollectors
11ImagebyManuelL?mmle-Ownwork,CCBY-SA4.0,
/w/index.php?curid=87526248
12Dupeyrat,Patrick(2011):ExperimentaldevelopmentandsimulationinvestigationofaPhotovoltaic-Thermalhybridsolarcollector.INSAdeLyon,France.L’InstitutNationaldesSciencesAppliquéesdeLyon.
13L?mmle,Manuel(2018):ThermalmanagementofPVTcollectors-developmentandmodellingofhighlyefficientPVTcollectorswithlow-emissivitycoatingsandoverheatingprotection.In:PhDthesis,FraunhoferISE,INATECHAlbert-Ludwigs-Universit?tFreiburg.DOI:10.6094/UNIFR/16446.
14ASTMG173-03(2012)-StandardTablesforReferenceSolarSpectralIrradiances:DirectNormalandHemisphericalon37°TiltedSurface.
/solar//spectra/am1.5/
Page4
ThereareamultitudeoftechnicalpossibilitiestocombinePVcellsandsolarthermalcollectors.AnumberofPVTcollectorsareavailableascommercialproducts,whichcanbedividedintothefollowingcategoriesaccordingtotheirbasicdesignandheattransferfluid:
?PVTliquidcollector
?PVTaircollector
Inadditiontotheclassificationbyheattransferfluid,PVTcollectorscanalsobecategorizedaccordingtothepresenceofasecondaryglazingtoreduceheatlossesandthepresenceofadevicetoconcentratesolarirradiation.
?UncoveredPVTcollector(WISCPVT)
?CoveredPVTcollector
?ConcentratingPVTcollector(CPVT)
Moreover,PVTcollectorscanbeclassifiedaccordingtotheirdesign,suchascelltechnology,typeoffluid,heatexchangermaterialandgeometry,typeofcontactbetweenfluidandPVmodule,fixationofheatexchanger,orlevelofbuildingintegration(buildingintegratedPVT
(BIPVT)collectors).1,
15
ThedesignandtypeofPVTcollectorsalwaysimpliesacertainadaptiontooperatingtemperatures,applications,andgivingprioritytoeitherheatorelectricitygeneration.Forinstance,operatingthePVTcollectoratlowtemperatureleadstoacoolingeffectofPVcellscomparedtoPVmodulesandthereforeanincreaseofelectricalpower.However,theheatalsohastobeutilizedatlowtemperatures.
ThemaximumoperatingtemperaturesformostPVmodulesarelimitedtolessthanthemaximumcertifiedoperationtemperatures(typically85°C).Nevertheless,twoormoreunitsofthermalenergyaregeneratedforeachunitofelectricalenergy,dependingoncellefficiencyandsystemdesign.
1.3.2PVTliquidcollector
Thebasicwater-cooleddesignuseschannelstodirectfluidflowusingpipingattacheddirectlyorindirectlytothebackofaPVmodule.Inastandardfluid-basedsystem,aworkingfluid,typicallywater,glycolormineraloil,circulatesintheheatexchangerbehindthePVcells.TheheatfromthePVcellsisconductedthroughthemetalandistransferredtotheworkingfluid(presumingthattheworkingfluidiscoolerthantheoperatingtemperatureofthecells).
1.3.3PVTaircollector
Thebasicair-cooleddesignuseseitherahollow,conductivehousingtomountthephotovoltaicpanelsoracontrolledflowofairtotherearfaceofthePVpanel.PVTaircollectorseitherdrawinfreshoutsideairoruseairasacirculatingheattransfermediuminaclosedloop.TheheattransferpropertiesofairarelowerthanthatoftypicallyusedliquidsandthereforerequiresaproportionallyhighermassflowratethananequivalentPVTliquidcollector.Theadvantageisthattheinfrastructurerequiredhaslowercostandcomplexity.
TheheatedairiscirculatedintoabuildingHVACsystemtodeliverthermalenergy.Excessheatgeneratedcanbesimplyventedtotheatmosphere.SomeversionsofthePVTaircollectorcanbeoperatedinawaytocoolthePVpanelstogeneratemoreelectricityandassistwithreducingthermaleffectsonlifetimeperformancedegradation.
AnumberofdifferentconfigurationsofPVTaircollectorsexist,whichvaryinengineeringsophistication.PVTaircollectorconfigurationsrangefromabasicenclosedshallowmetalboxwithanintakeandexhaustuptooptimizedheattransfersurfacesthatachieveuniformpanelheattransferacrossawiderangeofprocessandambientconditions.
PVTaircollectorscanbecarriedoutasuncoveredorcovereddesigns
.1
15L.Brottier(2018).Optimisationbiénergied’unpanneausolairemultifonctionnel:ducapteurauxinstallationsinsitu.Mécanique[physics.med-ph].UniversitéParis-Saclay,2019
.https://tel.archives-ouvertes.fr/tel-02133891
Page5
BasicconceptsofPVTcollectortechnologies,applicationsandmarkets
1.3.4UncoveredPVTcollector(WISC)
UncoveredPVTcollectors,alsodenotedasunglazedorwindand/orinfraredsensitivePVTcollectors(WISC),typicallycompriseofaPVmodulewithaheatexchangerstructureattachedtothebackofthePVmodule.WhilemostPVTcollectorsareprefabricatedunits,someproductsareofferedasheatexchangerstoberetrofittedtooff-the-shelfPVmodules.Inbothcases,agoodandlongtimedurablethermalcontactwithahighheattransfercoefficientbetweenthePVcellsandthefluidisessential.16
TherearsideoftheuncoveredPVTcollectorcanbeequippedwiththermalinsulation(e.g.mineralwoolorfoam)toreduceheatlossesoftheheatedfluid.UninsulatedPVTcollectorsarebeneficialforoperationnearandbelowambienttemperatures.ParticularlyuncoveredPVTcollectorswithincreasedheattransfertoambientairareasuitableheatsourceforheatpumpsystems.Whenthetemperatureintheheatpump’ssourceislowerthantheambient,thefluidcanbeheateduptoambienttemperatureeveninperiodswithoutsunshine.
Accordingly,uncoveredPVTcollectorscanbecategorizedinto:
?UncoveredPVTcollectorwithincreasedheattransfertoambientair
?UncoveredPVTcollectorwithoutrearinsulation
?UncoveredPVTcollectorwithrearinsulation
UncoveredPVTcollectorsarealsousedtoproviderenewablecoolingbydissipatingheatviathePVTcollectortotheambientairorbyutilizingtheradiativecoolingeffect.Indoingso,coldairorwaterisharnessed,whichcanbeutilizedforHVACapplications.
1.3.5CoveredPVTcollector
Covered,orglazedPVTcollectors,featureanadditionalglazing,whichenclosesaninsulatingairlayerbetweenthePVmoduleandthesecondaryglazing.Thisreducesheatlossesandincreasesthethermalefficiency.Moreover,coveredPVTcollectorscanreachsignificantlyhighertemperaturesthanPVmodulesoruncoveredPVTcollectors.Theoperatingtemperaturesmostlydependonthetemperatureoftheworkingfluid.Theaveragefluidtemperaturecanbebetween25°Cinswimmingpoolapplicationsto90°Cinsolarcoolingsystems(Figure3).
CoveredPVTcollectorsresembletheformanddesignofconventionalflatplatecollectorsorevacuatedvacuumtubes.Yet,PVcellsinsteadofspectrally-selectiveabsorbercoatingsabsorbtheincidentsolarirradianceandgenerateanelectricalcurrentinadditiontosolarheat.
Theinsulatingcharacteristicsofthefrontcoverincreasethethermalefficiencyandallowforhigheroperatingtemperatures.However,theadditionalopticalinterfacesincreaseopticalreflectionsandthusreducethegeneratedelectricalpower.Anti-reflectivecoatingsonthefrontglazingcanreducetheadditionalopticallosses.17
1.3.6ConcentratingPVTcollector(CPVT)
Aconcentratorsystemhastheadvantagetoreducethephotovoltaic(PV)cellareaneeded.ThereforeitispossibletousemoreexpensiveandefficientPVcells,e.g.multi-junctionphotovoltaiccells.TheconcentrationofsunlightalsoreducestheamountofhotPV-absorberareaandthereforereducesheatlossestotheambient,whichimprovessignificantlytheefficiencyforhigherapplicationtemperatures.
ConcentratorsystemsoftenrequirereliablecontrolsystemstoaccuratelytrackthesunandtoprotectthePVcellsfromdamagingover-temperatureconditions.However,therearealsostationeryPVTcollectortypesthatusenon-imagingreflectors,suchastheCompoundParabolicConcentrator(CPC),anddonothavetotrackthesun.
16Adam,Mario;Kramer,Korbinian;Fritzsche,Ulrich;Hamberger,Stephan(2014):AbschlussberichtPVT-Norm.F?rderkennzeichen01FS12035-?Verbundprojekt:StandardisierungundNormungvonmultifunktionalenPVTSolarkollektoren(PVT-Norm)“.
17Zondag,H.A.(2008):Flat-platePV-Thermalcollectorsandsystems:Areview.In:RenewableandSustainableEnergyReviews12(4),S.891–959.
Page6
Underidealconditions,about75%ofthesun'spowerdirectlyincidentuponsuchsystemscanbegatheredaselectricityandheat.Formoredetails,seethediscussionofCPVTwithinthearticleforconcentratedphotovoltaics.
Alimitationofhigh-concentrator(i.e.HCPVandHCPVT)systemsisthattheymaintaintheirlong-termadvantagesoverconventionalc-Si/mc-Sicollectorsonlyinregionsthatremainconsistentlyfreeofatmosphericaerosolcontaminants(e.g.lightclouds,smog,etc.).Powerproductionisrapidlydegradedbecause1)radiationisreflectedandscatteredoutsideofthesmall(oftenlessthan1°-2°)acceptanceangleofthecollectionoptics,and2)absorptionofspecificcomponentsofthesolarspectrumcausesoneormoreseriesjunctionswithintheMJcellstounderperform.Theshort-termimpactsofsuchpowergenerationirregularitiescanbereducedtosomedegreebyincludingelectricalandthermalstorageinthesystem.
1.4PVTapplicationsbytemperaturerange
TherangeofapplicationsofPVTcollectors,andingeneralsolarthermalcollectors,canbedividedaccordingtotheirtemperaturelevels:18
?lowtemperatureapplicationsupto50°C
?mediumtemperatureapplicationsupto80°C
?hightemperatureapplicationsabove80°C
Lowtemperatureapplicationsincludeheatpumpsystemsandheatingswimmingpoolsorspasupto50°C.PVTcollectorsinheatpumpsystemsacteitheraslowtemperaturesourcefortheheatpumpevaporatororontheloadsidetosupplymediumtemperatureheattoastoragetank.Moreover,regenerationofboreholesandgroundsourceheatexchangersispossible.1UncoveredPVTcollectorswithenhancedair-to-waterheatexchangecanevencomprisetheonlysourceofaheatpumpsystem.IncombinationwithasystemarchitectureallowingtostorecoldproducedwithWISCoraircollectors,alsoairconditioningispossible.
Lowandmediumtemperatureapplicationsforspaceheatinganddomestichotwaterprovisionarefoundinbuildings,withtemperaturesfrom20°Cto80°C.Thetemperaturesofthespecificsystemdependontherequirementsoftheheatsupplysystemfordomestichotwater(e.g.freshwaterstation,temperaturerequirementsforlegionellaprevention)andforspaceheating(e.g.underfloorheating,radiators).Moreover,thePVTcollectorarraycanbedimensionedtocoveronlysmallerfractionsoftheheatdemand(e.g.hotwaterpre-heating),thusreducingoperatingtemperaturesofthePVTcollector.
Processheatincludesadiverserangeofindustrialapplicationswithlowtohightemperaturerequirements(e.g.solarwaterdesalination,solarcooling,orpowergenerationwithconcentratingPVTcollectors).19PVTcollectortechnologiescanbeclusteredaccordingtotheirtemperaturelevelinthesameway:thesuitabilitypertemperaturerangedependsonthePVTcollectordesignandtechnology.Therefore,eachPVTcollectortechnologyfeaturesdifferentoptimaltemperatureranges.
Figure3showstypicaltemperaturerangesofbothPVTapplicationsandcollectortechnologies.20TheoperatingtemperatureofthePVTapplicationsultimatelydefinesthesuitabilityofeachtypeofPVTcollectortechnology.
18KalogirouSA(2014).Solarenergyengineering:processesandsystems.SecondEdition.AcademicPres
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 陶瓷廠給水管道施工合同
- 印刷廠紙張物料員聘用合同
- 2024年版高級酒店宴會廳租賃合同范本版B版
- 2024年版城市基礎(chǔ)設(shè)施建設(shè)項目承包合同
- 建筑節(jié)能工程成本管理
- 2024年標(biāo)準機器人服務(wù)合同模板版B版
- 侵權(quán)責(zé)任律師聘用合同
- 珠寶行業(yè)稅務(wù)登記流程
- 2024年新型蔬菜種植項目承包經(jīng)營協(xié)議3篇
- 交通運輸行業(yè)職工聘用合同
- 期末素養(yǎng)綜合測評卷(二)2024-2025學(xué)年魯教版(五四制)六年級數(shù)學(xué)上冊(解析版)
- 《企業(yè)文化宣講》課件
- 產(chǎn)品質(zhì)量整改措施
- 2024年武漢大學(xué)下半年非事業(yè)編制人員招聘(59人)筆試核心備考題庫及答案解析
- 電影《白日夢想家》課件
- 鹽城工學(xué)院《C語言及數(shù)據(jù)分析》2023-2024學(xué)年期末試卷
- 吉林省長春市(2024年-2025年小學(xué)五年級語文)人教版期末考試(上學(xué)期)試卷及答案
- 《變電站用交流系統(tǒng)》課件
- 競聘醫(yī)療組長
- 研究生年終總結(jié)和展望
- 團員發(fā)展紀實簿
評論
0/150
提交評論