中南民族大學(xué)《大數(shù)據(jù)分析與應(yīng)用綜合實(shí)驗(yàn)(一)》2022-2023學(xué)年第一學(xué)期期末試卷_第1頁(yè)
中南民族大學(xué)《大數(shù)據(jù)分析與應(yīng)用綜合實(shí)驗(yàn)(一)》2022-2023學(xué)年第一學(xué)期期末試卷_第2頁(yè)
中南民族大學(xué)《大數(shù)據(jù)分析與應(yīng)用綜合實(shí)驗(yàn)(一)》2022-2023學(xué)年第一學(xué)期期末試卷_第3頁(yè)
中南民族大學(xué)《大數(shù)據(jù)分析與應(yīng)用綜合實(shí)驗(yàn)(一)》2022-2023學(xué)年第一學(xué)期期末試卷_第4頁(yè)
中南民族大學(xué)《大數(shù)據(jù)分析與應(yīng)用綜合實(shí)驗(yàn)(一)》2022-2023學(xué)年第一學(xué)期期末試卷_第5頁(yè)
已閱讀5頁(yè),還剩2頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁(yè),共3頁(yè)中南民族大學(xué)《大數(shù)據(jù)分析與應(yīng)用綜合實(shí)驗(yàn)(一)》

2022-2023學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分一、單選題(本大題共30個(gè)小題,每小題1分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在數(shù)據(jù)分析中,數(shù)據(jù)抽樣是一種常用的方法。以下關(guān)于數(shù)據(jù)抽樣的目的,錯(cuò)誤的是?()A.減少數(shù)據(jù)的數(shù)量,降低數(shù)據(jù)分析的成本和時(shí)間B.保證樣本具有代表性,能夠反映總體的特征和趨勢(shì)C.避免數(shù)據(jù)的過(guò)擬合,提高數(shù)據(jù)分析的結(jié)果的準(zhǔn)確性和可靠性D.增加數(shù)據(jù)的多樣性,提高數(shù)據(jù)分析的結(jié)果的創(chuàng)新性和實(shí)用性2、在進(jìn)行數(shù)據(jù)可視化時(shí),顏色的選擇對(duì)于圖表的可讀性有很大影響。以下關(guān)于顏色選擇的原則,錯(cuò)誤的是?()A.避免使用過(guò)于鮮艷的顏色B.使用對(duì)比強(qiáng)烈的顏色區(qū)分不同的數(shù)據(jù)C.隨意選擇顏色,只要美觀D.考慮色盲人群的可辨識(shí)度3、在數(shù)據(jù)分析中,數(shù)據(jù)清洗是至關(guān)重要的一步。假設(shè)我們有一個(gè)包含大量客戶(hù)信息的數(shù)據(jù)集,其中存在缺失值、錯(cuò)誤數(shù)據(jù)和重復(fù)記錄等問(wèn)題。為了得到高質(zhì)量、準(zhǔn)確且可用的數(shù)據(jù),以下哪種數(shù)據(jù)清洗方法通常是首先考慮的?()A.直接刪除包含缺失值或錯(cuò)誤數(shù)據(jù)的記錄B.采用合適的方法填充缺失值,例如使用均值、中位數(shù)或其他統(tǒng)計(jì)值C.對(duì)重復(fù)記錄進(jìn)行隨機(jī)選擇保留D.忽略數(shù)據(jù)中的問(wèn)題,直接進(jìn)行分析4、在數(shù)據(jù)分析中,數(shù)據(jù)清洗是至關(guān)重要的一步。假設(shè)我們有一個(gè)包含大量客戶(hù)信息的數(shù)據(jù)集,其中存在缺失值、錯(cuò)誤數(shù)據(jù)和重復(fù)記錄等問(wèn)題。為了得到準(zhǔn)確和可靠的分析結(jié)果,需要對(duì)數(shù)據(jù)進(jìn)行有效的清洗。以下哪種數(shù)據(jù)清洗方法在處理這種復(fù)雜的數(shù)據(jù)質(zhì)量問(wèn)題時(shí)最為有效?()A.直接刪除包含缺失值或錯(cuò)誤數(shù)據(jù)的記錄B.采用均值或中位數(shù)填充缺失值C.通過(guò)數(shù)據(jù)驗(yàn)證規(guī)則糾正錯(cuò)誤數(shù)據(jù)D.以上方法結(jié)合使用5、在處理大量數(shù)據(jù)時(shí),為了提高數(shù)據(jù)處理效率,以下哪種數(shù)據(jù)結(jié)構(gòu)更適合快速查找和插入操作?()A.數(shù)組B.鏈表C.棧D.隊(duì)列6、當(dāng)分析一個(gè)在線教育平臺(tái)的課程評(píng)價(jià)數(shù)據(jù),以評(píng)估教師的教學(xué)質(zhì)量和課程的效果??紤]到評(píng)價(jià)的主觀性和多樣性,以下哪種方式可能有助于更客觀地綜合評(píng)價(jià)?()A.計(jì)算平均值B.去除極端值后計(jì)算平均值C.采用眾數(shù)D.以上都是7、數(shù)據(jù)分析中,數(shù)據(jù)分析方法的選擇應(yīng)根據(jù)具體問(wèn)題來(lái)確定。以下關(guān)于數(shù)據(jù)分析方法選擇的說(shuō)法中,錯(cuò)誤的是?()A.不同的數(shù)據(jù)分析方法適用于不同類(lèi)型的問(wèn)題和數(shù)據(jù),需要根據(jù)實(shí)際情況進(jìn)行選擇B.數(shù)據(jù)分析方法的選擇可以參考前人的研究經(jīng)驗(yàn)和案例,但不能完全依賴(lài)C.選擇數(shù)據(jù)分析方法時(shí),應(yīng)考慮方法的準(zhǔn)確性、效率和可解釋性等因素D.數(shù)據(jù)分析方法一旦確定就不能再進(jìn)行調(diào)整和改變,否則會(huì)影響分析結(jié)果的可靠性8、在數(shù)據(jù)庫(kù)中,若要優(yōu)化數(shù)據(jù)庫(kù)的存儲(chǔ)結(jié)構(gòu),以下哪個(gè)操作可能會(huì)被執(zhí)行?()A.合并表B.拆分表C.增加索引D.以上都是9、在數(shù)據(jù)分析中,如果想要比較兩個(gè)獨(dú)立樣本的均值是否有顯著差異,應(yīng)該使用哪種檢驗(yàn)方法?()A.t檢驗(yàn)B.方差分析C.卡方檢驗(yàn)D.秩和檢驗(yàn)10、對(duì)于一個(gè)大型數(shù)據(jù)集,若要快速篩選出符合特定條件的數(shù)據(jù),以下哪種數(shù)據(jù)庫(kù)操作更有效?()A.全表掃描B.索引查找C.排序D.分組11、在數(shù)據(jù)庫(kù)設(shè)計(jì)中,若要存儲(chǔ)學(xué)生的課程成績(jī),以下哪種數(shù)據(jù)類(lèi)型較為合適?()A.整數(shù)型B.浮點(diǎn)型C.字符型D.日期型12、在數(shù)據(jù)分析中,若要檢驗(yàn)數(shù)據(jù)是否來(lái)自于某個(gè)特定的分布,應(yīng)使用哪種檢驗(yàn)方法?()A.卡方擬合優(yōu)度檢驗(yàn)B.Kolmogorov-Smirnov檢驗(yàn)C.Shapiro-Wilk檢驗(yàn)D.以上都是13、在數(shù)據(jù)分析中,數(shù)據(jù)預(yù)處理的方法有很多,其中數(shù)據(jù)標(biāo)準(zhǔn)化是一種常用的方法。以下關(guān)于數(shù)據(jù)標(biāo)準(zhǔn)化的描述中,錯(cuò)誤的是?()A.數(shù)據(jù)標(biāo)準(zhǔn)化可以將數(shù)據(jù)轉(zhuǎn)換為具有相同尺度和單位的數(shù)值B.數(shù)據(jù)標(biāo)準(zhǔn)化可以提高數(shù)據(jù)分析的結(jié)果的準(zhǔn)確性和可靠性C.數(shù)據(jù)標(biāo)準(zhǔn)化的方法有多種,如min-max標(biāo)準(zhǔn)化、z-score標(biāo)準(zhǔn)化等D.數(shù)據(jù)標(biāo)準(zhǔn)化只適用于數(shù)值型數(shù)據(jù),對(duì)于分類(lèi)型數(shù)據(jù)無(wú)法處理14、假設(shè)要分析消費(fèi)者對(duì)新產(chǎn)品的反饋意見(jiàn),以下關(guān)于意見(jiàn)分析方法的描述,正確的是:()A.人工閱讀所有反饋意見(jiàn),憑主觀判斷總結(jié)主要觀點(diǎn)B.利用自然語(yǔ)言處理技術(shù)對(duì)反饋進(jìn)行分類(lèi)和情感分析C.只關(guān)注反饋中的負(fù)面意見(jiàn),忽略正面意見(jiàn)D.對(duì)于模糊不清的反饋意見(jiàn),直接忽略不計(jì)15、在進(jìn)行數(shù)據(jù)關(guān)聯(lián)分析時(shí),需要找出不同變量之間的關(guān)系。假設(shè)要分析客戶(hù)購(gòu)買(mǎi)行為與促銷(xiāo)活動(dòng)之間的關(guān)聯(lián),以下關(guān)于關(guān)聯(lián)分析方法的描述,正確的是:()A.只關(guān)注表面的關(guān)聯(lián),不深入分析內(nèi)在的因果關(guān)系B.不考慮數(shù)據(jù)的分布和異常值,直接進(jìn)行關(guān)聯(lián)分析C.運(yùn)用關(guān)聯(lián)規(guī)則挖掘、相關(guān)性分析等方法,同時(shí)考慮數(shù)據(jù)的特點(diǎn)和業(yè)務(wù)背景,挖掘有價(jià)值的關(guān)聯(lián)模式,并對(duì)結(jié)果進(jìn)行解釋和驗(yàn)證D.認(rèn)為關(guān)聯(lián)分析結(jié)果一定能直接用于制定營(yíng)銷(xiāo)策略,不進(jìn)行進(jìn)一步的評(píng)估和優(yōu)化16、在數(shù)據(jù)預(yù)處理階段,若發(fā)現(xiàn)數(shù)據(jù)中存在大量缺失值,以下哪種處理方法較為合適?()A.直接刪除含缺失值的記錄B.用均值或中位數(shù)填充缺失值C.根據(jù)其他變量推測(cè)缺失值D.以上方法均可17、在數(shù)據(jù)分析中,若要分析數(shù)據(jù)的偏態(tài)和峰態(tài),以下哪個(gè)統(tǒng)計(jì)量可以提供相關(guān)信息?()A.偏度系數(shù)B.峰度系數(shù)C.協(xié)方差D.相關(guān)系數(shù)18、假設(shè)要分析某網(wǎng)站不同頁(yè)面的訪問(wèn)量分布情況,以下哪種圖表能夠直觀地展示訪問(wèn)量的集中程度和離散程度?()A.直方圖B.箱線圖C.小提琴圖D.以上都不是19、當(dāng)分析數(shù)據(jù)的分布特征時(shí),以下哪個(gè)圖形可以直觀地展示數(shù)據(jù)的眾數(shù)?()A.直方圖B.莖葉圖C.箱線圖D.餅圖20、在數(shù)據(jù)分析中,數(shù)據(jù)挖掘的挑戰(zhàn)有很多,其中數(shù)據(jù)質(zhì)量問(wèn)題是一個(gè)重要的挑戰(zhàn)。以下關(guān)于數(shù)據(jù)質(zhì)量問(wèn)題的描述中,錯(cuò)誤的是?()A.數(shù)據(jù)質(zhì)量問(wèn)題可能會(huì)導(dǎo)致數(shù)據(jù)挖掘結(jié)果的錯(cuò)誤和不可靠B.數(shù)據(jù)質(zhì)量問(wèn)題可以通過(guò)數(shù)據(jù)清洗和驗(yàn)證等方法來(lái)解決C.數(shù)據(jù)質(zhì)量問(wèn)題只與數(shù)據(jù)的來(lái)源有關(guān),與數(shù)據(jù)挖掘的算法和技術(shù)無(wú)關(guān)D.數(shù)據(jù)質(zhì)量問(wèn)題需要在數(shù)據(jù)挖掘的整個(gè)過(guò)程中進(jìn)行關(guān)注和處理21、對(duì)于一個(gè)包含分類(lèi)變量和數(shù)值變量的數(shù)據(jù)集,若要進(jìn)行關(guān)聯(lián)規(guī)則挖掘,以下哪種方法較為合適?()A.Apriori算法B.FP-Growth算法C.Eclat算法D.以上都是22、數(shù)據(jù)分析中的文本分類(lèi)任務(wù)需要對(duì)大量文本進(jìn)行自動(dòng)分類(lèi)。假設(shè)要對(duì)新聞文章進(jìn)行分類(lèi),如政治、經(jīng)濟(jì)、體育等類(lèi)別,文本內(nèi)容多樣且語(yǔ)言表達(dá)復(fù)雜。以下哪種方法在處理這種多類(lèi)別文本分類(lèi)問(wèn)題時(shí)更能提高分類(lèi)準(zhǔn)確性?()A.使用深度學(xué)習(xí)模型,如卷積神經(jīng)網(wǎng)絡(luò)(CNN)B.基于詞向量的傳統(tǒng)機(jī)器學(xué)習(xí)分類(lèi)算法C.依賴(lài)人工制定的分類(lèi)規(guī)則D.隨機(jī)分類(lèi)23、假設(shè)我們有一組銷(xiāo)售數(shù)據(jù),要分析不同產(chǎn)品類(lèi)別的銷(xiāo)售額在總銷(xiāo)售額中的占比情況,以下哪種圖表最能直觀地展示結(jié)果?()A.折線圖B.柱狀圖C.餅圖D.箱線圖24、在對(duì)一家餐廳的營(yíng)業(yè)數(shù)據(jù)進(jìn)行分析,例如菜品銷(xiāo)售數(shù)量、顧客評(píng)價(jià)、營(yíng)業(yè)時(shí)間段等,以制定營(yíng)銷(xiāo)策略和優(yōu)化菜單。以下哪個(gè)因素可能對(duì)餐廳的盈利能力產(chǎn)生最大影響?()A.熱門(mén)菜品的推廣B.營(yíng)業(yè)時(shí)間段的調(diào)整C.菜單的更新和優(yōu)化D.以上都是25、對(duì)于數(shù)據(jù)分析中的優(yōu)化問(wèn)題,假設(shè)要在一定的約束條件下最大化或最小化某個(gè)目標(biāo)函數(shù)。以下哪種優(yōu)化算法可能適用于解決這類(lèi)復(fù)雜的優(yōu)化任務(wù)?()A.線性規(guī)劃,處理線性目標(biāo)和約束B(niǎo).遺傳算法,通過(guò)模擬進(jìn)化過(guò)程搜索最優(yōu)解C.模擬退火算法,避免陷入局部最優(yōu)D.不進(jìn)行優(yōu)化,隨機(jī)選擇解決方案26、數(shù)據(jù)分析中的數(shù)據(jù)融合是將多個(gè)數(shù)據(jù)源的數(shù)據(jù)整合在一起。假設(shè)要整合來(lái)自不同部門(mén)的銷(xiāo)售數(shù)據(jù)和客戶(hù)數(shù)據(jù),以下關(guān)于數(shù)據(jù)融合方法的描述,正確的是:()A.簡(jiǎn)單地將數(shù)據(jù)拼接在一起,不處理數(shù)據(jù)格式和語(yǔ)義的差異B.不進(jìn)行數(shù)據(jù)的清洗和轉(zhuǎn)換,直接使用原始數(shù)據(jù)進(jìn)行融合C.運(yùn)用數(shù)據(jù)清洗、轉(zhuǎn)換和匹配技術(shù),解決數(shù)據(jù)格式、單位和語(yǔ)義的不一致,確保融合后數(shù)據(jù)的準(zhǔn)確性和可用性D.認(rèn)為數(shù)據(jù)融合不會(huì)引入誤差和沖突,不進(jìn)行質(zhì)量檢查27、數(shù)據(jù)分析中,數(shù)據(jù)質(zhì)量的監(jiān)控是持續(xù)改進(jìn)數(shù)據(jù)質(zhì)量的重要手段。以下關(guān)于數(shù)據(jù)質(zhì)量監(jiān)控的說(shuō)法中,錯(cuò)誤的是?()A.數(shù)據(jù)質(zhì)量監(jiān)控可以通過(guò)設(shè)置數(shù)據(jù)質(zhì)量指標(biāo)、定期檢查和預(yù)警等方式來(lái)實(shí)現(xiàn)B.數(shù)據(jù)質(zhì)量監(jiān)控應(yīng)覆蓋數(shù)據(jù)的采集、存儲(chǔ)、處理和使用等各個(gè)環(huán)節(jié)C.數(shù)據(jù)質(zhì)量監(jiān)控需要建立有效的反饋機(jī)制,及時(shí)發(fā)現(xiàn)和解決數(shù)據(jù)質(zhì)量問(wèn)題D.數(shù)據(jù)質(zhì)量監(jiān)控只需要在數(shù)據(jù)倉(cāng)庫(kù)中進(jìn)行,其他數(shù)據(jù)源不需要進(jìn)行監(jiān)控28、在數(shù)據(jù)分析中的關(guān)聯(lián)規(guī)則挖掘中,以下關(guān)于支持度和置信度的說(shuō)法,錯(cuò)誤的是()A.支持度表示項(xiàng)集在數(shù)據(jù)集中出現(xiàn)的頻率,用于衡量規(guī)則的普遍性B.置信度表示在包含前提條件的事務(wù)中同時(shí)包含結(jié)論的概率,用于衡量規(guī)則的可靠性C.通常情況下,支持度和置信度越高,關(guān)聯(lián)規(guī)則越有價(jià)值D.只關(guān)注支持度或置信度其中一個(gè)指標(biāo)就可以確定有效的關(guān)聯(lián)規(guī)則,另一個(gè)指標(biāo)可以忽略29、在進(jìn)行數(shù)據(jù)分析時(shí),如果需要對(duì)數(shù)據(jù)進(jìn)行標(biāo)準(zhǔn)化處理以消除量綱的影響,以下哪種方法在Python中常用?()A.StandardScaler類(lèi)B.MinMaxScaler類(lèi)C.Normalizer類(lèi)D.以上都是30、在數(shù)據(jù)分析中,異常值檢測(cè)對(duì)于發(fā)現(xiàn)數(shù)據(jù)中的異常情況非常重要。假設(shè)要檢測(cè)一個(gè)生產(chǎn)線上產(chǎn)品質(zhì)量數(shù)據(jù)中的異常值,這些數(shù)據(jù)受到多種因素的影響。以下哪種異常值檢測(cè)方法在這種工業(yè)生產(chǎn)數(shù)據(jù)中更能準(zhǔn)確地發(fā)現(xiàn)異常?()A.基于統(tǒng)計(jì)的方法B.基于距離的方法C.基于密度的方法D.基于聚類(lèi)的方法二、論述題(本大題共5個(gè)小題,共25分)1、(本題5分)在電商平臺(tái)的品牌營(yíng)銷(xiāo)中,數(shù)據(jù)分析能夠精準(zhǔn)定位目標(biāo)客戶(hù)和評(píng)估品牌影響力。以某電商平臺(tái)上的品牌商家為例,闡述如何通過(guò)數(shù)據(jù)分析來(lái)制定品牌推廣策略、選擇合作渠道、評(píng)估品牌價(jià)值,以及如何利用社交媒體數(shù)據(jù)提升品牌知名度。2、(本題5分)探討在社交媒體的用戶(hù)活躍度提升中,如何運(yùn)用數(shù)據(jù)分析了解用戶(hù)參與度的影響因素,制定激勵(lì)措施,提高用戶(hù)活躍度。3、(本題5分)在線教育行業(yè)的發(fā)展依賴(lài)于對(duì)學(xué)生學(xué)習(xí)數(shù)據(jù)的分析。以某在線教育機(jī)構(gòu)為例,探討如何通過(guò)數(shù)據(jù)分析來(lái)診斷學(xué)生的學(xué)習(xí)問(wèn)題、提供個(gè)性化的學(xué)習(xí)方案、評(píng)估教學(xué)質(zhì)量,以及如何利用數(shù)據(jù)驅(qū)動(dòng)的方法改進(jìn)課程設(shè)計(jì)和教學(xué)方法。4、(本題5分)探討在醫(yī)療大數(shù)據(jù)中,如何通過(guò)關(guān)聯(lián)規(guī)則挖掘發(fā)現(xiàn)疾病之間的潛在關(guān)聯(lián),為疾病的預(yù)防和診斷提供新的思路和方法。5、(本題5分)隨著社交媒體的蓬勃發(fā)展,用戶(hù)生成了大量的文本數(shù)據(jù)。以某知名社交平臺(tái)為例,探討如何運(yùn)用自然語(yǔ)言處理技術(shù)和數(shù)據(jù)分析方法對(duì)這些文本進(jìn)行情感分析,挖掘用戶(hù)的情緒傾向和觀點(diǎn),以及如何將這些分析結(jié)果應(yīng)用于產(chǎn)品改進(jìn)、營(yíng)銷(xiāo)策略制定和輿情監(jiān)測(cè)。三、簡(jiǎn)答題(本大題共5個(gè)小題,共25分)1、(本題5分)在處理高維數(shù)據(jù)時(shí),常用的降維方法除了主成分分析還有哪些?解釋這些方法的工作原理和適用情況。2、(本題5分)描述數(shù)據(jù)質(zhì)量評(píng)估的指標(biāo)體系,包括準(zhǔn)確性、完整性、一致性等,并說(shuō)明如何通過(guò)這些指標(biāo)來(lái)評(píng)估數(shù)據(jù)質(zhì)量和采取改進(jìn)措施。3、(本題5分)在大數(shù)據(jù)分析中,流數(shù)據(jù)處理是常見(jiàn)的場(chǎng)景。請(qǐng)說(shuō)明流數(shù)據(jù)的特點(diǎn)和處理流數(shù)據(jù)的常用技術(shù),如Storm、Flink等的工作原理。4、(本題5分)在進(jìn)行數(shù)據(jù)分析時(shí),如何進(jìn)行數(shù)據(jù)的倫理和法律

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論