2025屆湖南省岳陽縣一中、湘陰縣一中高三第三次模擬考試數學試卷含解析_第1頁
2025屆湖南省岳陽縣一中、湘陰縣一中高三第三次模擬考試數學試卷含解析_第2頁
2025屆湖南省岳陽縣一中、湘陰縣一中高三第三次模擬考試數學試卷含解析_第3頁
2025屆湖南省岳陽縣一中、湘陰縣一中高三第三次模擬考試數學試卷含解析_第4頁
2025屆湖南省岳陽縣一中、湘陰縣一中高三第三次模擬考試數學試卷含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆湖南省岳陽縣一中、湘陰縣一中高三第三次模擬考試數學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線的中心在原點且一個焦點為,直線與其相交于,兩點,若中點的橫坐標為,則此雙曲線的方程是A. B.C. D.2.若為純虛數,則z=()A. B.6i C. D.203.我國古代數學家秦九韶在《數書九章》中記述了“三斜求積術”,用現代式子表示即為:在中,角所對的邊分別為,則的面積.根據此公式,若,且,則的面積為()A. B. C. D.4.中,,為的中點,,,則()A. B. C. D.25.已知,則()A. B. C. D.6.已知等差數列的前項和為,若,則等差數列公差()A.2 B. C.3 D.47.已知復數,為的共軛復數,則()A. B. C. D.8.函數在上為增函數,則的值可以是()A.0 B. C. D.9.在中,,則()A. B. C. D.10.數列{an}是等差數列,a1=1,公差d∈[1,2],且a4+λa10+a16=15,則實數λ的最大值為()A. B. C. D.11.如圖,用一邊長為的正方形硬紙,按各邊中點垂直折起四個小三角形,做成一個蛋巢,將體積為的雞蛋(視為球體)放入其中,蛋巢形狀保持不變,則雞蛋中心(球心)與蛋巢底面的距離為()A. B. C. D.12.已知平面,,直線滿足,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.即不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.實數,滿足約束條件,則的最大值為__________.14.設,若函數有大于零的極值點,則實數的取值范圍是_____15.已知(且)有最小值,且最小值不小于1,則的取值范圍為__________.16.正項等比數列|滿足,且成等差數列,則取得最小值時的值為_____三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)我國在貴州省平塘縣境內修建的500米口徑球面射電望遠鏡(FAST)是目前世界上最大單口徑射電望遠鏡.使用三年來,已發(fā)現132顆優(yōu)質的脈沖星候選體,其中有93顆已被確認為新發(fā)現的脈沖星,脈沖星是上世紀60年代天文學的四大發(fā)現之一,脈沖星就是正在快速自轉的中子星,每一顆脈沖星每兩脈沖間隔時間(脈沖星的自轉周期)是-定的,最小小到0.0014秒,最長的也不過11.765735秒.某-天文研究機構觀測并統(tǒng)計了93顆已被確認為新發(fā)現的脈沖星的自轉周期,繪制了如圖的頻率分布直方圖.(1)在93顆新發(fā)現的脈沖星中,自轉周期在2至10秒的大約有多少顆?(2)根據頻率分布直方圖,求新發(fā)現脈沖星自轉周期的平均值.18.(12分)如圖,在中,已知,,,為線段的中點,是由繞直線旋轉而成,記二面角的大小為.(1)當平面平面時,求的值;(2)當時,求二面角的余弦值.19.(12分)已知拋物線,焦點為,直線交拋物線于兩點,交拋物線的準線于點,如圖所示,當直線經過焦點時,點恰好是的中點,且.(1)求拋物線的方程;(2)點是原點,設直線的斜率分別是,當直線的縱截距為1時,有數列滿足,設數列的前n項和為,已知存在正整數使得,求m的值.20.(12分)在中,內角的對邊分別為,且(1)求;(2)若,且面積的最大值為,求周長的取值范圍.21.(12分)設,,,.(1)若的最小值為4,求的值;(2)若,證明:或.22.(10分)a,b,c分別為△ABC內角A,B,C的對邊.已知a=3,,且B=60°.(1)求△ABC的面積;(2)若D,E是BC邊上的三等分點,求.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

根據點差法得,再根據焦點坐標得,解方程組得,,即得結果.【詳解】設雙曲線的方程為,由題意可得,設,,則的中點為,由且,得,,即,聯立,解得,,故所求雙曲線的方程為.故選D.【點睛】本題主要考查利用點差法求雙曲線標準方程,考查基本求解能力,屬于中檔題.2、C【解析】

根據復數的乘法運算以及純虛數的概念,可得結果.【詳解】∵為純虛數,∴且得,此時故選:C.【點睛】本題考查復數的概念與運算,屬基礎題.3、A【解析】

根據,利用正弦定理邊化為角得,整理為,根據,得,再由余弦定理得,又,代入公式求解.【詳解】由得,即,即,因為,所以,由余弦定理,所以,由的面積公式得故選:A【點睛】本題主要考查正弦定理和余弦定理以及類比推理,還考查了運算求解的能力,屬于中檔題.4、D【解析】

在中,由正弦定理得;進而得,在中,由余弦定理可得.【詳解】在中,由正弦定理得,得,又,所以為銳角,所以,,在中,由余弦定理可得,.故選:D【點睛】本題主要考查了正余弦定理的應用,考查了學生的運算求解能力.5、B【解析】

利用誘導公式以及同角三角函數基本關系式化簡求解即可.【詳解】,本題正確選項:【點睛】本題考查誘導公式的應用,同角三角函數基本關系式的應用,考查計算能力.6、C【解析】

根據等差數列的求和公式即可得出.【詳解】∵a1=12,S5=90,∴5×12+d=90,解得d=1.故選C.【點睛】本題主要考查了等差數列的求和公式,考查了推理能力與計算能力,屬于中檔題.7、C【解析】

求出,直接由復數的代數形式的乘除運算化簡復數.【詳解】.故選:C【點睛】本題考查復數的代數形式的四則運算,共軛復數,屬于基礎題.8、D【解析】

依次將選項中的代入,結合正弦、余弦函數的圖象即可得到答案.【詳解】當時,在上不單調,故A不正確;當時,在上單調遞減,故B不正確;當時,在上不單調,故C不正確;當時,在上單調遞增,故D正確.故選:D【點睛】本題考查正弦、余弦函數的單調性,涉及到誘導公式的應用,是一道容易題.9、A【解析】

先根據得到為的重心,從而,故可得,利用可得,故可計算的值.【詳解】因為所以為的重心,所以,所以,所以,因為,所以,故選A.【點睛】對于,一般地,如果為的重心,那么,反之,如果為平面上一點,且滿足,那么為的重心.10、D【解析】

利用等差數列通項公式推導出λ,由d∈[1,2],能求出實數λ取最大值.【詳解】∵數列{an}是等差數列,a1=1,公差d∈[1,2],且a4+λa10+a16=15,∴1+3d+λ(1+9d)+1+15d=15,解得λ,∵d∈[1,2],λ2是減函數,∴d=1時,實數λ取最大值為λ.故選D.【點睛】本題考查實數值的最大值的求法,考查等差數列的性質等基礎知識,考查運算求解能力,是基礎題.11、D【解析】

先求出球心到四個支點所在球的小圓的距離,再加上側面三角形的高,即可求解.【詳解】設四個支點所在球的小圓的圓心為,球心為,由題意,球的體積為,即可得球的半徑為1,又由邊長為的正方形硬紙,可得圓的半徑為,利用球的性質可得,又由到底面的距離即為側面三角形的高,其中高為,所以球心到底面的距離為.故選:D.【點睛】本題主要考查了空間幾何體的結構特征,以及球的性質的綜合應用,著重考查了數形結合思想,以及推理與計算能力,屬于基礎題.12、A【解析】

,是相交平面,直線平面,則“”“”,反之,直線滿足,則或//或平面,即可判斷出結論.【詳解】解:已知直線平面,則“”“”,反之,直線滿足,則或//或平面,“”是“”的充分不必要條件.故選:A.【點睛】本題考查了線面和面面垂直的判定與性質定理、簡易邏輯的判定方法,考查了推理能力與計算能力.二、填空題:本題共4小題,每小題5分,共20分。13、10【解析】

畫出可行域,根據目標函數截距可求.【詳解】解:作出可行域如下:由得,平移直線,當經過點時,截距最小,最大解得的最大值為10故答案為:10【點睛】考查可行域的畫法及目標函數最大值的求法,基礎題.14、【解析】

先求導數,求解導數為零的根,結合根的分布求解.【詳解】因為,所以,令得,因為函數有大于0的極值點,所以,即.【點睛】本題主要考查利用導數研究函數的極值點問題,極值點為導數的變號零點,側重考查轉化化歸思想.15、【解析】

真數有最小值,根據已知可得的范圍,求出函數的最小值,建立關于的不等量關系,求解即可.【詳解】,且(且)有最小值,,的取值范圍為.故答案為:.【點睛】本題考查對數型復合函數的性質,熟練掌握基本初等函數的性質是解題關鍵,屬于基礎題.16、2【解析】

先由題意列出關于的方程,求得的通項公式,再表示出即可求解.【詳解】解:設公比為,且,時,上式有最小值,故答案為:2.【點睛】本題考查等比數列、等差數列的有關性質以及等比數列求積、求最值的有關運算,中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)79顆;(2)5.5秒.【解析】

(1)利用各小矩形的面積和為1可得,進而得到脈沖星自轉周期在2至10秒的頻率,從而得到頻數;(2)平均值的估計值為各小矩形組中值與頻率的乘積的和得到.【詳解】(1)第一到第六組的頻率依次為0.1,0.2,0.3,0.2,,0.05,其和為1所以,,所以,自轉周期在2至10秒的大約有(顆).(2)新發(fā)現的脈沖星自轉周期平均值為(秒).故新發(fā)現的脈沖星自轉周期平均值為5.5秒.【點睛】本題考查頻率分布直方圖的應用,涉及到平均數的估計值等知識,是一道容易題.18、(1);(2).【解析】

(1)平面平面,建立坐標系,根據法向量互相垂直求得;(2)求兩個平面的法向量的夾角.【詳解】(1)如圖,以為原點,在平面內垂直于的直線為軸所在的直線分別為軸,軸,建立空間直角坐標系,則,設為平面的一個法向量,由得,取,則因為平面的一個法向量為由平面平面,得所以即.(2)設二面角的大小為,當平面的一個法向量為,綜上,二面角的余弦值為.【點睛】本題考查用空間向量求平面間的夾角,平面與平面垂直的判定,二面角的平面角及求法,難度一般.19、(1)(2)【解析】

(1)設出直線的方程,再與拋物線聯立方程組,進而求得點的坐標,結合弦長即可求得拋物線的方程;(2)設直線的方程,運用韋達定理可得,可得之間的關系,再運用進行裂項,可求得,解不等式求得的值.【詳解】解:(1)設過拋物線焦點的直線方程為,與拋物線方程聯立得:,設,所以,,,所以拋物線方程為(2)設直線方程為,,,,,,由得.【點睛】本題考查了直線與拋物線的關系,考查了韋達定理和運用裂項法求數列的和,考查了運算能力,屬于中檔題.20、(1)(2)【解析】

(1)利用二倍角公式及三角形內角和定理,將化簡為,求出的值,結合,求出A的值;(2)寫出三角形的面積公式,由其最大值為求出.由余弦定理,結合,,求出的范圍,注意.進而求出周長的范圍.【詳解】解:(1)整理得解得或(舍去)又;(2)由題意知,又,,又周長的取值范圍是【點睛】本題考查了二倍角余弦公式,三角形面積公式,余弦定理的應用,求三角形的周長的范圍問題.屬于中檔題.21、(1)2;(2)見解析【解析】

(1)將化簡為,再利用基本不等式即可求出最小值為4,便可得出的值;(2)根據,即,得出,利用基本不等式求出最值,便可得出的取值范圍.【詳解】解:(1)由題可知,,,,,∴.(2)∵,∴,∴,∴,即:或.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論