2025屆山西省晉城市百校聯(lián)盟高三第二次模擬考試數(shù)學試卷含解析_第1頁
2025屆山西省晉城市百校聯(lián)盟高三第二次模擬考試數(shù)學試卷含解析_第2頁
2025屆山西省晉城市百校聯(lián)盟高三第二次模擬考試數(shù)學試卷含解析_第3頁
2025屆山西省晉城市百校聯(lián)盟高三第二次模擬考試數(shù)學試卷含解析_第4頁
2025屆山西省晉城市百校聯(lián)盟高三第二次模擬考試數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2025屆山西省晉城市百校聯(lián)盟高三第二次模擬考試數(shù)學試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知復數(shù),其中為虛數(shù)單位,則()A. B. C.2 D.2.已知我市某居民小區(qū)戶主人數(shù)和戶主對戶型結構的滿意率分別如圖和如圖所示,為了解該小區(qū)戶主對戶型結構的滿意程度,用分層抽樣的方法抽取的戶主進行調(diào)查,則樣本容量和抽取的戶主對四居室滿意的人數(shù)分別為A.240,18 B.200,20C.240,20 D.200,183.設函數(shù)在定義城內(nèi)可導,的圖象如圖所示,則導函數(shù)的圖象可能為()A. B.C. D.4.集合的真子集的個數(shù)為()A.7 B.8 C.31 D.325.記的最大值和最小值分別為和.若平面向量、、,滿足,則()A. B.C. D.6.若集合,,則=()A. B. C. D.7.函數(shù)在區(qū)間上的大致圖象如圖所示,則可能是()A.B.C.D.8.函數(shù)在的圖象大致為()A. B.C. D.9.關于函數(shù),下列說法正確的是()A.函數(shù)的定義域為B.函數(shù)一個遞增區(qū)間為C.函數(shù)的圖像關于直線對稱D.將函數(shù)圖像向左平移個單位可得函數(shù)的圖像10.下列函數(shù)中,既是奇函數(shù),又是上的單調(diào)函數(shù)的是()A. B.C. D.11.已知為拋物線的準線,拋物線上的點到的距離為,點的坐標為,則的最小值是()A. B.4 C.2 D.12.某幾何體的三視圖如圖所示,則該幾何體的體積是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在中,角,,所對的邊分別邊,且,設角的角平分線交于點,則的值最小時,___.14.已知拋物線的焦點為,斜率為2的直線與的交點為,若,則直線的方程為___________.15.已知,,且,則最小值為__________.16.若將函數(shù)的圖象沿軸向右平移個單位后所得的圖象與的圖象關于軸對稱,則的最小值為________________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在中,角的對邊分別為.已知,且.(1)求的值;(2)若的面積是,求的周長.18.(12分)△的內(nèi)角的對邊分別為,且.(1)求角的大小(2)若,△的面積,求△的周長.19.(12分)一酒企為擴大生產(chǎn)規(guī)模,決定新建一個底面為長方形的室內(nèi)發(fā)酵館,發(fā)酵館內(nèi)有一個無蓋長方體發(fā)酵池,其底面為長方形(如圖所示),其中.結合現(xiàn)有的生產(chǎn)規(guī)模,設定修建的發(fā)酵池容積為450米,深2米.若池底和池壁每平方米的造價分別為200元和150元,發(fā)酵池造價總費用不超過65400元(1)求發(fā)酵池邊長的范圍;(2)在建發(fā)酵館時,發(fā)酵池的四周要分別留出兩條寬為4米和米的走道(為常數(shù)).問:發(fā)酵池的邊長如何設計,可使得發(fā)酵館占地面積最小.20.(12分)在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,直線的極坐標方程為,直線交曲線于兩點,為中點.(1)求曲線的直角坐標方程和點的軌跡的極坐標方程;(2)若,求的值.21.(12分)如圖,為坐標原點,點為拋物線的焦點,且拋物線上點處的切線與圓相切于點(1)當直線的方程為時,求拋物線的方程;(2)當正數(shù)變化時,記分別為的面積,求的最小值.22.(10分)已知是拋物線:的焦點,點在上,到軸的距離比小1.(1)求的方程;(2)設直線與交于另一點,為的中點,點在軸上,.若,求直線的斜率.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

把已知等式變形,然后利用數(shù)代數(shù)形式的乘除運算化簡,再由復數(shù)模的公式計算得答案.【詳解】解:,則.故選:D.【點睛】本題考查了復數(shù)代數(shù)形式的乘除運算,考查了復數(shù)模的求法,是基礎題.2、A【解析】

利用統(tǒng)計圖結合分層抽樣性質(zhì)能求出樣本容量,利用條形圖能求出抽取的戶主對四居室滿意的人數(shù).【詳解】樣本容量為:(150+250+400)×30%=240,∴抽取的戶主對四居室滿意的人數(shù)為:故選A.【點睛】本題考查樣本容量和抽取的戶主對四居室滿意的人數(shù)的求法,是基礎題,解題時要認真審題,注意統(tǒng)計圖的性質(zhì)的合理運用.3、D【解析】

根據(jù)的圖象可得的單調(diào)性,從而得到在相應范圍上的符號和極值點,據(jù)此可判斷的圖象.【詳解】由的圖象可知,在上為增函數(shù),且在上存在正數(shù),使得在上為增函數(shù),在為減函數(shù),故在有兩個不同的零點,且在這兩個零點的附近,有變化,故排除A,B.由在上為增函數(shù)可得在上恒成立,故排除C.故選:D.【點睛】本題考查導函數(shù)圖象的識別,此類問題應根據(jù)原函數(shù)的單調(diào)性來考慮導函數(shù)的符號與零點情況,本題屬于基礎題.4、A【解析】

計算,再計算真子集個數(shù)得到答案.【詳解】,故真子集個數(shù)為:.故選:.【點睛】本題考查了集合的真子集個數(shù),意在考查學生的計算能力.5、A【解析】

設為、的夾角,根據(jù)題意求得,然后建立平面直角坐標系,設,,,根據(jù)平面向量數(shù)量積的坐標運算得出點的軌跡方程,將和轉化為圓上的點到定點距離,利用數(shù)形結合思想可得出結果.【詳解】由已知可得,則,,,建立平面直角坐標系,設,,,由,可得,即,化簡得點的軌跡方程為,則,則轉化為圓上的點與點的距離,,,,轉化為圓上的點與點的距離,,.故選:A.【點睛】本題考查和向量與差向量模最值的求解,將向量坐標化,將問題轉化為圓上的點到定點距離的最值問題是解答的關鍵,考查化歸與轉化思想與數(shù)形結合思想的應用,屬于中等題.6、C【解析】試題分析:化簡集合故選C.考點:集合的運算.7、B【解析】

根據(jù)特殊值及函數(shù)的單調(diào)性判斷即可;【詳解】解:當時,,無意義,故排除A;又,則,故排除D;對于C,當時,,所以不單調(diào),故排除C;故選:B【點睛】本題考查根據(jù)函數(shù)圖象選擇函數(shù)解析式,這類問題利用特殊值與排除法是最佳選擇,屬于基礎題.8、C【解析】

先根據(jù)函數(shù)奇偶性排除B,再根據(jù)函數(shù)極值排除A;結合特殊值即可排除D,即可得解.【詳解】函數(shù),則,所以為奇函數(shù),排除B選項;當時,,所以排除A選項;當時,,排除D選項;綜上可知,C為正確選項,故選:C.【點睛】本題考查根據(jù)函數(shù)解析式判斷函數(shù)圖像,注意奇偶性、單調(diào)性、極值與特殊值的使用,屬于基礎題.9、B【解析】

化簡到,根據(jù)定義域排除,計算單調(diào)性知正確,得到答案.【詳解】,故函數(shù)的定義域為,故錯誤;當時,,函數(shù)單調(diào)遞增,故正確;當,關于的對稱的直線為不在定義域內(nèi),故錯誤.平移得到的函數(shù)定義域為,故不可能為,錯誤.故選:.【點睛】本題考查了三角恒等變換,三角函數(shù)單調(diào)性,定義域,對稱,三角函數(shù)平移,意在考查學生的綜合應用能力.10、C【解析】

對選項逐個驗證即得答案.【詳解】對于,,是偶函數(shù),故選項錯誤;對于,,定義域為,在上不是單調(diào)函數(shù),故選項錯誤;對于,當時,;當時,;又時,.綜上,對,都有,是奇函數(shù).又時,是開口向上的拋物線,對稱軸,在上單調(diào)遞增,是奇函數(shù),在上是單調(diào)遞增函數(shù),故選項正確;對于,在上單調(diào)遞增,在上單調(diào)遞增,但,在上不是單調(diào)函數(shù),故選項錯誤.故選:.【點睛】本題考查函數(shù)的基本性質(zhì),屬于基礎題.11、B【解析】

設拋物線焦點為,由題意利用拋物線的定義可得,當共線時,取得最小值,由此求得答案.【詳解】解:拋物線焦點,準線,過作交于點,連接由拋物線定義,

,

當且僅當三點共線時,取“=”號,∴的最小值為.

故選:B.【點睛】本題主要考查拋物線的定義、標準方程,以及簡單性質(zhì)的應用,體現(xiàn)了數(shù)形結合的數(shù)學思想,屬于中檔題.12、A【解析】

觀察可知,這個幾何體由兩部分構成,:一個半圓柱體,底面圓的半徑為1,高為2;一個半球體,半徑為1,按公式計算可得體積?!驹斀狻吭O半圓柱體體積為,半球體體積為,由題得幾何體體積為,故選A?!军c睛】本題通過三視圖考察空間識圖的能力,屬于基礎題。二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

根據(jù)題意,利用余弦定理和基本不等式得出,再利用正弦定理,即可得出.【詳解】因為,則,由余弦定理得:,當且僅當時取等號,又因為,,所以.故答案為:.【點睛】本題考查余弦定理和正弦定理的應用,以及基本不等式求最值,考查計算能力.14、【解析】

設直線l的方程為,,聯(lián)立直線l與拋物線C的方程,得到A,B點橫坐標的關系式,代入到中,解出t的值,即可求得直線l的方程【詳解】設直線.由題設得,故,由題設可得.

由可得,

則,從而,得,所以l的方程為,故答案為:【點睛】本題主要考查了直線的方程,拋物線的定義,拋物線的簡單幾何性質(zhì),直線與拋物線的位置關系,屬于中檔題.15、【解析】

首先整理所給的代數(shù)式,然后結合均值不等式的結論即可求得其最小值.【詳解】,結合可知原式,且,當且僅當時等號成立.即最小值為.【點睛】在應用基本不等式求最值時,要把握不等式成立的三個條件,就是“一正——各項均為正;二定——積或和為定值;三相等——等號能否取得”,若忽略了某個條件,就會出現(xiàn)錯誤.16、【解析】

由題意利用函數(shù)的圖象變換規(guī)律,三角函數(shù)的圖像的對稱性,求得的最小值.【詳解】解:將函數(shù)的圖象沿軸向右平移個單位長度,可得的圖象.根據(jù)圖象與的圖象關于軸對稱,可得,,,即時,的最小值為.故答案為:.【點睛】本題主要考查函數(shù)的圖象變換規(guī)律,正弦函數(shù)圖像的對稱性,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】

(1)由正弦定理可得,,化簡并結合,可求得三者間的關系,代入余弦定理可求得;(2)由(1)可求得,再結合三角形的面積公式,可求出,從而可求出答案.【詳解】(1)因為,所以,整理得:.因為,所以,所以.由余弦定理可得.(2)由(1)知,則,因為的面積是,所以,即,解得,則.故的周長為:.【點睛】本題考查了正弦定理、余弦定理在解三角形中的應用,考查了三角形面積公式的應用,屬于基礎題.18、(I);(II).【解析】

試題分析:(I)由已知可得;(II)依題意得:的周長為.試題解析:(I)∵,∴.∴,∴,∴,∴,∴.(II)依題意得:∴,∴,∴,∴,∴的周長為.考點:1、解三角形;2、三角恒等變換.19、(1)(2)當時,,米時,發(fā)酵館的占地面積最小;當時,時,發(fā)酵館的占地面積最?。划敃r,米時,發(fā)酵館的占地面積最小.【解析】

(1)設米,總費用為,解即可得解;(2)結合(1)可得占地面積結合導函數(shù)分類討論即可求得最值.【詳解】(1)由題意知:矩形面積米,設米,則米,由題意知:,得,設總費用為,則,解得:,又,故,所以發(fā)酵池邊長的范圍是不小于15米,且不超過25米;(2)設發(fā)酵館的占地面積為由(1)知:,①時,,在上遞增,則,即米時,發(fā)酵館的占地面積最??;②時,,在上遞減,則,即米時,發(fā)酵館的占地面積最小;③時,時,,遞減;時,遞增,因此,即時,發(fā)酵館的占地面積最??;綜上所述:當時,,米時,發(fā)酵館的占地面積最小;當時,時,發(fā)酵館的占地面積最??;當時,米時,發(fā)酵館的占地面積最小.【點睛】此題考查函數(shù)模型的應用,關鍵在于根據(jù)題意恰當?shù)亟⒛P?,利用函?shù)性質(zhì)討論最值取得的情況.20、(1),;(2)或【解析】

(1)根據(jù)曲線的參數(shù)方程消去參數(shù),可得曲線的直角坐標方程,再由,,可得點的軌跡的極坐標方程;(2)將曲線極坐標方程求,與直線極坐標方程聯(lián)立,消去,得到關于的二次方程,由的幾何意義可求出,而(1)可知,然后列方程可求出的值.【詳解】(1)曲線的直角坐標方程為,圓的圓心為,設,所以,則由,即為點軌跡的極坐標方程.(2)曲線的極坐標方程為,將與曲線的極坐標方程聯(lián)立得,,設,所以,,由,即,令,上述方程可化為,解得.由,所以,即或.【點睛】此題考查參數(shù)方程與普通方程的互化,極坐標方程與直角坐標方程的互化,利用極坐標求點的軌跡方程,考查運算求解能力,考查數(shù)形結合思想,屬于中檔題.21、(1)x2=4y.(2).【解析】試題解析:(Ⅰ)設點P(x0,),由x2=2py(p>0)得,y=,求導y′=,因為直線PQ的斜率為1,所以=1且x0--√2=0,解得p=2,所以拋物線C1的方程為x2=4y.(Ⅱ)因為點P處的切線方程為:y-=(x-x0),即2x0x-2py-x02=0,∴OQ的方程為y=-x根據(jù)切線與圓切,得d=r,即,化簡得x04=4x02+4p2,由方程組,解得Q(,),所以|PQ|=√1+k2|xP-xQ|=點F(0,)到切線PQ的距離是d=,所以S1==,S2=,而由x04=4x02+4p2知,4p2=x04-4x02>0,得|x0|>2,所以==+1≥2+1,當且僅當時取“=”號,即x02=4+2,此時,p=.所以的最小值為2+1.考點:求拋物線的方程,與拋物線有關的最值問題.22、(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論