下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
站名:站名:年級(jí)專業(yè):姓名:學(xué)號(hào):凡年級(jí)專業(yè)、姓名、學(xué)號(hào)錯(cuò)寫、漏寫或字跡不清者,成績(jī)按零分記。…………密………………封………………線…………第1頁,共1頁華東理工大學(xué)《人工智能技術(shù)與應(yīng)用》
2022-2023學(xué)年第一學(xué)期期末試卷題號(hào)一二三四總分得分一、單選題(本大題共15個(gè)小題,每小題2分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在人工智能的文本分類任務(wù)中,類別不平衡是一個(gè)常見的問題。假設(shè)一個(gè)數(shù)據(jù)集包含大量屬于某一主要類別的樣本,而其他類別的樣本數(shù)量較少。以下哪種方法在處理類別不平衡問題時(shí)最為有效,能夠提高少數(shù)類別的分類性能?()A.重采樣技術(shù)B.代價(jià)敏感學(xué)習(xí)C.特征選擇D.以上方法綜合運(yùn)用2、在人工智能的推薦系統(tǒng)中,為用戶提供個(gè)性化的推薦服務(wù)。假設(shè)我們要構(gòu)建一個(gè)電影推薦系統(tǒng),以下關(guān)于推薦算法的選擇,哪一項(xiàng)是不準(zhǔn)確的?()A.基于內(nèi)容的推薦B.協(xié)同過濾推薦C.隨機(jī)推薦D.混合推薦3、人工智能中的遷移學(xué)習(xí)是一種有效的技術(shù),能夠利用已有的知識(shí)和模型來解決新的問題。假設(shè)我們已經(jīng)有一個(gè)在大規(guī)模圖像數(shù)據(jù)集上訓(xùn)練好的卷積神經(jīng)網(wǎng)絡(luò)模型,現(xiàn)在要將其應(yīng)用于一個(gè)新的、但相關(guān)的圖像分類任務(wù)。以下關(guān)于遷移學(xué)習(xí)的說法,哪一項(xiàng)是正確的?()A.可以直接使用原模型的參數(shù),無需任何調(diào)整B.只需要對(duì)模型的最后幾層進(jìn)行重新訓(xùn)練C.遷移學(xué)習(xí)一定能提高新任務(wù)的性能D.原模型的架構(gòu)和新任務(wù)必須完全相同4、人工智能中的機(jī)器翻譯是一項(xiàng)具有挑戰(zhàn)性的任務(wù)。假設(shè)我們要將一段中文文本翻譯成英文,以下關(guān)于機(jī)器翻譯的挑戰(zhàn),哪一項(xiàng)是不正確的?()A.詞匯的多義性B.語法結(jié)構(gòu)的差異C.文化背景的不同D.機(jī)器翻譯的質(zhì)量已經(jīng)超越了人類翻譯5、在人工智能的語音合成任務(wù)中,假設(shè)要生成自然流暢且富有情感的語音,以下關(guān)于模型訓(xùn)練的方法,哪一項(xiàng)是不正確的?()A.使用大量的語音數(shù)據(jù)進(jìn)行訓(xùn)練,包括不同的口音和情感B.引入情感標(biāo)簽,讓模型學(xué)習(xí)不同情感下的語音特征C.只訓(xùn)練模型生成單一的語音風(fēng)格,以保證一致性D.結(jié)合聲學(xué)模型和語言模型,提高語音合成的質(zhì)量6、人工智能在智能家居領(lǐng)域的應(yīng)用為人們的生活帶來了便利。以下關(guān)于人工智能在智能家居應(yīng)用的描述,不準(zhǔn)確的是()A.可以實(shí)現(xiàn)家電的智能控制和自動(dòng)化運(yùn)行,根據(jù)用戶的習(xí)慣和需求進(jìn)行個(gè)性化設(shè)置B.通過語音指令和智能傳感器,提供便捷的家居服務(wù)和環(huán)境監(jiān)測(cè)C.智能家居中的人工智能系統(tǒng)容易受到網(wǎng)絡(luò)攻擊和數(shù)據(jù)泄露的威脅D.目前智能家居中的人工智能應(yīng)用還處于初級(jí)階段,功能較為單一,無法滿足用戶的多樣化需求7、人工智能在農(nóng)業(yè)領(lǐng)域的應(yīng)用可以幫助提高農(nóng)作物產(chǎn)量和質(zhì)量。假設(shè)要開發(fā)一個(gè)系統(tǒng)來監(jiān)測(cè)農(nóng)田中的病蟲害情況,需要能夠準(zhǔn)確識(shí)別病蟲害的類型和嚴(yán)重程度。以下哪種圖像分析技術(shù)和機(jī)器學(xué)習(xí)算法的組合在這個(gè)任務(wù)中最為有效?()A.圖像分割技術(shù)結(jié)合決策樹算法B.目標(biāo)檢測(cè)技術(shù)結(jié)合支持向量機(jī)算法C.特征提取技術(shù)結(jié)合樸素貝葉斯算法D.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)結(jié)合隨機(jī)森林算法8、在人工智能的發(fā)展中,可解釋性是一個(gè)重要的研究方向。假設(shè)一個(gè)用于信用評(píng)估的人工智能模型,以下關(guān)于模型可解釋性的描述,正確的是:()A.復(fù)雜的人工智能模型不需要具備可解釋性,只要預(yù)測(cè)結(jié)果準(zhǔn)確就行B.可解釋性只對(duì)研究人員有意義,對(duì)于實(shí)際應(yīng)用中的用戶不重要C.通過特征重要性分析和可視化等方法,可以提高人工智能模型的可解釋性,增強(qiáng)用戶對(duì)模型決策的信任D.所有的人工智能模型都可以被完全解釋清楚,不存在無法解釋的黑盒部分9、假設(shè)要開發(fā)一個(gè)能夠輔助醫(yī)生進(jìn)行疾病診斷的人工智能系統(tǒng),需要整合多種醫(yī)療數(shù)據(jù),如病歷、影像、檢驗(yàn)報(bào)告等。在這個(gè)過程中,以下哪個(gè)環(huán)節(jié)可能是最具挑戰(zhàn)性的?()A.數(shù)據(jù)的清洗和預(yù)處理B.多模態(tài)數(shù)據(jù)的融合C.模型的訓(xùn)練和優(yōu)化D.模型的解釋和可信賴性10、人工智能在醫(yī)療影像診斷中的應(yīng)用不斷發(fā)展。以下關(guān)于人工智能在醫(yī)療影像診斷應(yīng)用的說法,不正確的是()A.能夠輔助醫(yī)生更快速、準(zhǔn)確地檢測(cè)病變和異常B.可以提高診斷的一致性和重復(fù)性,減少人為誤差C.人工智能的診斷結(jié)果可以完全替代醫(yī)生的專業(yè)判斷D.需要與醫(yī)生的臨床經(jīng)驗(yàn)和專業(yè)知識(shí)相結(jié)合,共同為患者提供診斷服務(wù)11、人工智能中的深度學(xué)習(xí)模型通常需要大量的訓(xùn)練數(shù)據(jù)。假設(shè)要訓(xùn)練一個(gè)用于圖像分類的卷積神經(jīng)網(wǎng)絡(luò)(CNN),但可用的標(biāo)注數(shù)據(jù)有限。以下哪種方法可能有助于提高模型的性能?()A.使用數(shù)據(jù)增強(qiáng)技術(shù),如翻轉(zhuǎn)、旋轉(zhuǎn)、縮放圖像,增加數(shù)據(jù)的多樣性B.減少模型的層數(shù)和參數(shù)數(shù)量,以降低對(duì)數(shù)據(jù)的需求C.直接使用未標(biāo)注的數(shù)據(jù)進(jìn)行訓(xùn)練D.放棄深度學(xué)習(xí)模型,選擇傳統(tǒng)的機(jī)器學(xué)習(xí)算法12、人工智能在語音識(shí)別領(lǐng)域取得了重大進(jìn)展。假設(shè)要開發(fā)一個(gè)能夠?qū)崟r(shí)將語音轉(zhuǎn)換為文字的系統(tǒng),以下關(guān)于語音識(shí)別的描述,哪一項(xiàng)是不正確的?()A.聲學(xué)模型用于分析語音的聲學(xué)特征,語言模型用于理解語言的語法和語義B.深度神經(jīng)網(wǎng)絡(luò)在語音識(shí)別中能夠提高識(shí)別準(zhǔn)確率和魯棒性C.語音識(shí)別系統(tǒng)在各種環(huán)境和口音條件下都能達(dá)到100%的準(zhǔn)確率D.對(duì)大量不同口音和背景噪音的語音數(shù)據(jù)進(jìn)行訓(xùn)練,可以提升系統(tǒng)的適應(yīng)性13、在人工智能的應(yīng)用中,智能推薦系統(tǒng)越來越普及。假設(shè)一個(gè)電商平臺(tái)要為用戶提供個(gè)性化的商品推薦,需要綜合考慮用戶的歷史購(gòu)買行為、瀏覽記錄和商品的屬性等多方面信息。以下哪種算法或模型在處理這種多源異構(gòu)數(shù)據(jù)的推薦任務(wù)上表現(xiàn)更為出色?()A.協(xié)同過濾算法B.基于內(nèi)容的推薦算法C.混合推薦算法D.關(guān)聯(lián)規(guī)則挖掘14、人工智能中的遷移學(xué)習(xí)方法可以利用已有的知識(shí)和模型來解決新的問題。假設(shè)要將一個(gè)在大規(guī)模圖像數(shù)據(jù)集上訓(xùn)練好的模型應(yīng)用到小樣本的特定領(lǐng)域圖像分類任務(wù)中。以下關(guān)于遷移學(xué)習(xí)的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.可以將預(yù)訓(xùn)練模型的特征提取部分應(yīng)用到新任務(wù)中,并在新數(shù)據(jù)上微調(diào)B.遷移學(xué)習(xí)能夠有效解決新任務(wù)數(shù)據(jù)量不足的問題,提高模型的泛化能力C.直接使用預(yù)訓(xùn)練模型的輸出結(jié)果,無需任何調(diào)整,就能在新任務(wù)中取得好的效果D.選擇合適的預(yù)訓(xùn)練模型和遷移策略對(duì)于遷移學(xué)習(xí)的成功至關(guān)重要15、在人工智能的智能客服中,以下哪個(gè)能力對(duì)于提高用戶滿意度最重要?()A.快速準(zhǔn)確地回答問題B.理解用戶的情感和意圖C.提供個(gè)性化的服務(wù)D.主動(dòng)引導(dǎo)用戶進(jìn)行交流二、簡(jiǎn)答題(本大題共3個(gè)小題,共15分)1、(本題5分)解釋人工智能在智能企業(yè)文化傳播中的方法。2、(本題5分)解釋人工智能的主要研究領(lǐng)域。3、(本題5分)說明人工智能在廣告和營(yíng)銷中的精準(zhǔn)策略。三、操作題(本大題共5個(gè)小題,共25分)1、(本題5分)利用Python實(shí)現(xiàn)一個(gè)基于規(guī)則的智能問答系統(tǒng),能夠回答關(guān)于歷史、地理、科學(xué)等方面的常見問題。定義問題的模式和對(duì)應(yīng)的答案規(guī)則,輸入問題后系統(tǒng)能夠根據(jù)規(guī)則給出準(zhǔn)確的回答,并處理一些模糊或不完整的問題。2、(本題5分)基于Python的Scikit-learn庫,運(yùn)用線性回歸算法對(duì)一個(gè)包含房屋面積和價(jià)格的數(shù)據(jù)集進(jìn)行房?jī)r(jià)預(yù)測(cè)。通過添加正則化項(xiàng),防止過擬合,并評(píng)估模型的預(yù)測(cè)精度。3、(本題5分)基于Python的OpenCV庫和深度學(xué)習(xí)框架,實(shí)現(xiàn)一個(gè)實(shí)時(shí)的商品識(shí)別和計(jì)價(jià)系統(tǒng)。能夠在超市購(gòu)物環(huán)境中準(zhǔn)確識(shí)別商品并計(jì)算價(jià)格,為自助結(jié)賬提供支持。4、(本題5分)使用Python的OpenCV庫,實(shí)現(xiàn)對(duì)視頻中的人流量密度估計(jì)。適用于公共場(chǎng)所的人流監(jiān)控和管理,通過圖像處理和機(jī)器學(xué)習(xí)算法實(shí)現(xiàn)密度估計(jì)。5、(本題5分)在PyTorch中,構(gòu)建一個(gè)基于注意力機(jī)制的圖像分割模型。提高分割的準(zhǔn)確性和邊界的清晰性。四、案例分
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度特種工程沙石材料供貨合同3篇
- 2024年商業(yè)店面裝修工程合同2篇
- 2024版?zhèn)€人發(fā)明專利許可及知識(shí)產(chǎn)權(quán)轉(zhuǎn)讓合同示例3篇
- 2024年度上海市房屋租賃合同樣本6篇
- 2024實(shí)習(xí)教師教育實(shí)習(xí)指導(dǎo)教師責(zé)任合同協(xié)議3篇
- 2024年度電商企業(yè)廣告投放合同3篇
- 2024宿舍管理員宿舍設(shè)施更新改造服務(wù)合同2篇
- 2024年度房屋買賣合同中的房屋質(zhì)量保證3篇
- 2024年度企業(yè)內(nèi)部講師認(rèn)證授權(quán)培訓(xùn)協(xié)議合同范本3篇
- 2024年度演出節(jié)目單制作合同演出主辦方與節(jié)目單制作公司之間的節(jié)目單制作協(xié)議3篇
- 【MOOC】大學(xué)攝影-河南理工大學(xué) 中國(guó)大學(xué)慕課MOOC答案
- 執(zhí)紀(jì)審查業(yè)務(wù)專題培訓(xùn)
- 音樂著作權(quán)授權(quán)合同模板
- 《鐵路軌道維護(hù)》課件-鋼軌鉆孔作業(yè)
- 【MOOC】數(shù)據(jù)結(jié)構(gòu)與算法-北京大學(xué) 中國(guó)大學(xué)慕課MOOC答案
- 信息安全意識(shí)培訓(xùn)課件
- Python試題庫(附參考答案)
- 道法第二單元 成長(zhǎng)的時(shí)空 單元測(cè)試 2024-2025學(xué)年統(tǒng)編版道德與法治七年級(jí)上冊(cè)
- MOOC 理解馬克思-南京大學(xué) 中國(guó)大學(xué)慕課答案
- 海洋的前世今生智慧樹知到期末考試答案2024年
- 預(yù)算與預(yù)算法課件
評(píng)論
0/150
提交評(píng)論